
002e4fd0-0

Per Thulin

002e4fd0-0 ii

COLLABORATORS

TITLE :

002e4fd0-0

ACTION NAME DATE SIGNATURE

WRITTEN BY Per Thulin April 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

002e4fd0-0 iii

Contents

1 002e4fd0-0 1

1.1 " . 1

1.2 A Very Short Introduction . 2

1.3 Machine Requirements . 2

1.4 News in version 2 . 3

1.5 About this Tutorial . 3

1.6 The Structure of a GRAAL Game . 3

1.7 Syntax Conventions . 5

1.8 Limitations, Ranges, Reserved Numbers . 6

1.9 Variables in Text Strings . 7

1.10 GRAAL Commands . 8

1.11 GRAAL Conditions . 13

1.12 animation sequences . 14

1.13 The GRAAL player interface . 14

1.14 IFOBJ / IFOBJ2 . 16

1.15 IFPICK . 16

1.16 IFOF . 16

1.17 IFROOM . 17

1.18 IFRF . 18

1.19 IFCARR / IFNOTCARR . 18

1.20 IFTYPE . 18

1.21 IFSPOS . 19

1.22 IFCBOB . 19

1.23 IFFLOOR . 19

1.24 IFDATE . 20

1.25 IFTIME . 21

1.26 IFWEEKDAY . 21

1.27 W(ait) . 22

1.28 EXIT . 22

1.29 REDO . 22

002e4fd0-0 iv

1.30 CUTSCENE . 23

1.31 QUIT . 24

1.32 DOAFTER . 24

1.33 CANCEL . 26

1.34 DSET . 26

1.35 LINE . 27

1.36 EDLG . 28

1.37 OBJ1 / OBJ2 . 28

1.38 VERB . 29

1.39 ROOM . 29

1.40 MARK . 30

1.41 RESUME . 31

1.42 SAY . 31

1.43 GOTO . 32

1.44 THINK . 32

1.45 RESP . 32

1.46 HANDLE . 33

1.47 PICK . 33

1.48 GET . 34

1.49 REMOVE . 34

1.50 NAME . 35

1.51 ICON . 35

1.52 PREP . 36

1.53 NEWOBJ . 36

1.54 SETOF . 36

1.55 ADDOF . 37

1.56 DECOF . 38

1.57 SETRF . 38

1.58 ADDRF . 39

1.59 SHOWEXIT . 40

1.60 HIDEEXIT . 40

1.61 DECRF . 41

1.62 CBOB . 41

1.63 CMOVE . 41

1.64 MOBJ . 42

1.65 MEXIT . 42

1.66 CPOS . 43

1.67 CHAR . 43

1.68 FLOOR . 43

002e4fd0-0 v

1.69 NFLOOR . 44

1.70 SETFLOOR . 44

1.71 OMOVE . 45

1.72 SHOW . 46

1.73 HIDE . 47

1.74 OBJONTOP . 48

1.75 TRACK . 48

1.76 SAMLOAD . 49

1.77 SAMPLAY . 49

1.78 CLPART . 50

1.79 BOBS . 50

1.80 HOTSP . 51

1.81 LIGHTS . 51

1.82 COLOUR . 51

1.83 FADE . 52

1.84 CAMERA . 52

1.85 TITLE . 52

1.86 TYPE . 53

1.87 TEXT . 53

1.88 BOBON . 54

1.89 BOBOFF . 55

1.90 PBOB . 55

1.91 SETDATE . 55

1.92 SETTIME . 56

1.93 ADDTIME . 56

1.94 SAVETIME . 57

1.95 RESTORETIME . 57

1.96 NOBREAK . 58

1.97 FINAL . 58

1.98 graal.main file . 58

1.99 .section files . 63

1.100 .room files . 63

1.101NAME . 65

1.102VERSION . 65

1.103MAX_CACHE . 65

1.104 ARROW_CURSOR: . 66

1.105 CURSOR_PALETTE: . 66

1.106INV_LAYOUT . 67

1.107 INV_UP . 67

002e4fd0-0 vi

1.108 DLG_LAYOUT . 68

1.109 CUTSCENE_LAYOUT . 69

1.110 SENTENCE_LAYOUT . 70

1.111 TIME_FORMAT . 70

1.112 TIME_LAYOUT . 71

1.113 DATE_FORMAT . 72

1.114 DATE_LAYOUT . 74

1.115 WALK_BUTTON . 74

1.116 DISABLE_QUIT . 75

1.117 N_VERBS . 75

1.118 VERB_ZONE . 75

1.119 VERB_TEXT . 76

1.120 MONTH_TEXT . 77

1.121 DAY_TEXT . 77

1.122 SYSTEM_TEXT . 77

1.123EXIT_COL . 78

1.124OBJ_COL . 78

1.125START_ROOM . 79

1.126MAX_ROOM . 79

1.127MAX_SECTION . 79

1.128MAX_DACT . 80

1.129 N_DIALOGUES . 80

1.130MSGFONT . 80

1.131 LINE_LENGTH . 81

1.132 NORMAL_WAIT . 81

1.133 MODE_SWITCH . 82

1.134 SPLIT_LINE . 82

1.135COMMAND_AREA . 82

1.136RESOURCE . 83

1.137GLOBALOBJS . 83

1.138GLOBALBOBS . 84

1.139CLPART . 85

1.140BOBS . 85

1.141CHARACTER_HEIGHT . 86

1.142CHARACTER_BOB . 86

1.143CHARACTER_COL . 87

1.144PAUSE_RIGHT . 87

1.145STILL_RIGHT . 87

1.146WALK_RIGHT . 88

002e4fd0-0 vii

1.147WALK_SPEED . 88

1.148TALK_MAP . 88

1.149HANDLE_MAP . 89

1.150OBJECT . 89

1.151DLG . 92

1.152ACTION . 93

1.153DACT . 93

1.154UPDATE . 94

1.155SECTION . 94

1.156BG_IFF . 94

1.157START_POS . 95

1.158FLOOR . 95

1.159 PATH . 97

1.160EXIT . 98

1.161STATIC . 99

1.162ANIM . 99

1.163LINE . 100

1.164LACT . 101

1.165 Trouble-shooting . 102

1.166My command / statement doesn’t work . 102

1.167My iff pictures look awful / crash the system . 103

1.168GRAAL ignores my rooms . 103

1.169" . 104

1.170Mouse cursor does not register visible object . 105

1.171My exits do not appear . 105

1.172GRAAL . 105

1.173Index . 106

002e4fd0-0 1 / 123

Chapter 1

002e4fd0-0

1.1 "

GRAAL ON-LINE REFERENCE
=======================

2.0 beta (c) Per Thulin 1996

~A~Very~Short~Introduction~~~~~~~~~~~~~
========

~Machine~Requirements~~~~~~~~~~~~~~~~~~
\ /

~News~in~version~2~~~~~~~~~~~~~~~~~~~~~
| |

~About~this~Reference~~~~~~~~~~~~~~~~~~
| |

~The~Structure~of~a~GRAAL~Game~~~~~~~~~
| |

~Syntax~Conventions~~~~~~~~~~~~~~~~~~~~
\ /

~Limitations,~Ranges,~Reserved~Numbers~
||

~Special~Characters~in~Text~Strings~~~~
====

~The~GRAAL~player~interface~~~~~~~~~~~~

~Statements~in~the~graal.main~file~~~~~

~Statements~in~the~n.section~files~~~~~

002e4fd0-0 2 / 123

~Statements~in~the~n.room~files~~~~~~~~

~Conditions~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~Commands~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~Trouble-shooting~~~~~~~~~~~~~~~~~~~~~~

1.2 A Very Short Introduction

A Very Short Introduction

What is GRAAL?

GRAAL is a computer language that lets you create graphic adventures in
a~"classic" format using no more than a text editor and a~paint/animation~
package.

If you want to see what the result may look like, just play the Olaf 1
demo~to which this guide is attached. Throughout this online reference, the
files~that make up the demo adventure are used to show working examples of
how to~ construct an adventure using all the available statements and
commands.

(Just make sure the graal.guide file and all Olaf 1 demo files are in the
same~drawer, otherwise the links from this guide to the script files don’t
work!)

--

NOTE: The registered version of GRAAL contains some programming~tools
essential for the serious adventure creator, for example~devices to
un-comment and encrypt your scripts to make it impossible to~crack the game
by looking at the files.

However, the function of the freely distributable version is not
limited~in~any other way - you may create as large an adventure as you wish
using~only~the GRAAL program contained in the demo package, if you have the
stamina~and~perseverence to do so...!

--

1.3 Machine Requirements

MACHINE REQUIREMENTS

To develop GRAAL games, you need the following:

* A hard disk

002e4fd0-0 3 / 123

* 2MB RAM

The following is very much recommended:

* A machine with at least the speed of an A1200

* Fast RAM

1.4 News in version 2

News in GRAAL 2

Welcome to GRAAL 2, a massive addition to (and overhaul of) GRAAL 1.2.

There are quite a number of new features and enhancements in this version of
GRAAL. In the on-line reference, you will see the word *NEW* next to the
short descriptions of many statements and commands, indicating they are
either completely new or significantly enhanced.

Be sure to read the README file for a walk-through of the new features and
changes to the system, as well as a description of the bug fixes. Once I
delved into the depths of GRAAL 1.2, I found bugs that could make your heart
stop. I am certain that most have been erased now, although I am equally
certain new ones have been introduced instead. Please bear with me and
report them to

pethu@wmdata.com

1.5 About this Tutorial

About this Reference

I recommend all developers to read the GRAAL Tutorial prior to emerging too
deep into the art of GRAAL writing. The GRAAL Tutorial is included in the
GRAAL 1.0 unregistered development package.

Although it is possible to construct an adventure with no other information
than the one given in this reference, it is not recommended. That said, Amos
Pro users stand a better chance than others of succeeding witout too much
pain inflicted, because some Amos Pro concepts are used straight "off the
shelf" in GRAAL - for example, animation sequences, hotspots, and fades.

1.6 The Structure of a GRAAL Game

GRAAL script structure

A GRAAL adventures is based on a number of script
files,~related~to~each~other~in the following way:

002e4fd0-0 4 / 123

+-------------+
| graal.main |
+------+------+

|
+------------------+----------------+
| |

+----+-----+ +----+-----+
|n.section | . . . |n.section |
+----+-----+ +----+-----+

| |
+--------+--------+ +---------------+
| | | | |

+---+---++---+---++---+---+ +---+---+ +---+---+
|n.room ||n.room ||n.room | |n.room | |n.room |
+-------++-------++-------+ +-------+ +-------+

There is always a
graal.main
file, describing the

main~characteristics~of~the~game and of the main character (which is the
one~the~player~controls~and commands).

The entire adventure is divided into locations or
"rooms"~as~they~are~called~ in GRAAL. The specifics of each room is defined
in a

n.room
file

The rooms may be grouped into sections, as~shown~above. Each section has a

n.section
file.

The general idea is that if a player can issue a certain~command~or~do~a~
certain thing in just one specific room, the GRAAL
code~to~handle~that~action~ should be placed in the corresponding .room
script file.~If~the~action~can~ occur anywhere in the section , the code is
placed in~the~.section~file;~and if~the action is something that can occur
anywhere in~the~adventure,~it is~ taken~ care of in the graal.main file.

Whenever the player inputs a command, first the current
room~file~is~scanned~~for appropriate action, then the section file,
and~lastly~the~graal.main~file.~ This is why the graal.main file should
always~contain~general~"safety~nets" to~ handle most of the totally
off-the-wall~and~generally stupid~things~a player~ may try during the game!

Apart from the three script file types above, there are two other
types~with~~specific purposes:

.scene files, containing the commands making up an
animated,~~non-interactive~"cut-scene".

.ptrn files, containing animation patterns too big and complex to

002e4fd0-0 5 / 123

fit~into~the~code of a script file.

1.7 Syntax Conventions

GRAAL Syntax

Script Syntax

Scripts can normally contain empty lines, comment lines, and statement
lines. (Exceptions are the .scene files, which only contain commands, and
.ptrn files, which only contain animation patterns.)

Comment lines always begin with the characters /*.

Statement lines always begin with the statement followed by a colon and one
blank space. After that comes the parameters separated by semicolons, but
without spaces in between, like this:

STATEMENT: parameter;parameter;parameter;...;parameter

In the following statements, each parameter is a condition or command:

ACTION
- Actions taken for player input

DACT
- Actions executed when entering a new room

LACT
- Actions taken when player chooses a dialogue line

Each condition and command then has its own "internal" syntax. Usually,
parameters within a command are separated by colons (,).

Some statements and command allow you to leave parameter positions "blank"
to retain a previous value or set a default value. "blank" does not mean
"empty": You MUST enter a blank space in the position! For example, if you
wish to leave the two middle parameters of the SHOW command empty, this is
the way to do it:

SHOW 2, , ,4

(This example tells GRAAL to use image number 4 to display object 2, but let
the image remain in its old place, since we left the x and y parameters
blank.)

Command and Statement Notation

UPPERCASE

002e4fd0-0 6 / 123

Type as written.

lowercase

Replace with value of specified type.

list

A list of values separated with | characters may be used. In conditions, any
value in the list will make the condition TRUE. In commands, one of the
alternatives in the list will be chosen at random each time the command is
encountered during gameplay.

option1|option2

One of the options can be chosen.

[parameter,]

This parameter is optional.

Referring to the Contents of the Input Sentence

When the scripts are searched for commands to execute, what happens is based
entirely on how the current input sentence from the player looks.

IN this reference, the first object in the current command sentence input by
the player is referred to as OBJ1, and the second - if any - as OBJ2. The
"command" itself is referred to as the VERB.

Referring to Objects and Images

An object number can be an ordinary number (n), a room object number
(ROBJn) or a section object number (SOBJn).

An image number can be an ordinary global image (n), a room image (RBOBn)
or a section image (SBOBn).

1.8 Limitations, Ranges, Reserved Numbers

GRAAL Limits, Ranges & Reserved Numbers

These are basic technical limitations to GRAAL 2.

SCREEN GRAPHICS

002e4fd0-0 7 / 123

SCENE AREA: Background pictures must be lowres, 32 or 64 (EHB) colours, and
between 320 and 640 pixels wide. (IFF picture files used for clipart must
also be the same number of colours.)

COMMAND AND DIALOGUE AREAS: Pictures used must be hires, and 640 pixels
wide. (No more than 16 colours.)

BOBS AND BOB IMAGES

Allowed BOB numbers for general use: 1-59

Allowed BOB image numbers for general use: 11-any number

BOB images assigned:

1-10 - Reserved for system use.

ANIMATION

Animation channels allowed for general use: 3-15

STATEMENT AND COMMAND LIMITS

Item Limit Alterable
--- ------ --------------
Max no of DACT lines in room file 50 Y (graal.main)
Max no of concurrent dialogues 6 Y -"-
Max no of dialogue lines per dialogue 30 Y -"-
Max no of LACT statements per dialogue 90 Y -"-
Max no of ACTION lines in a room 120 N
Max no of ACTION lines in a section 200 N
Number of flags for each object 6 N
Number of flags for each room 20 N
Maximum number of floors in a room 12 N
Maximum number of paths in a room 12 N
Max.no of objects in the inventory 50 N
Max no of objects in current room 30 N
(displayed simultaneously, not counting
BOBON, STATIC:, ANIM: graphics)

1.9 Variables in Text Strings

Special text characters

The following special character strings are replaced with variable values
etc. when used in SAY, THINK, RESP, and similar commands

\ is replaced with a line break

002e4fd0-0 8 / 123

#R#n#f# will be replaced by the value held in flag f for room n

#O#n#f# will be replaced by the value held in flag f for object n

#OBJ1 will be replaced by the name of OBJ1

#OBJ2 will be replaced by the name of OBJ2

#Won will be replaced by determination word n for object o
(That is, o should be 1 for OBJ1, or 2 for OBJ2.)

#TIME will be replaced by the current game time in the format
specified in the

TIME_FORMAT
statement..

#DATE will be treplaced by the current game date in the format
specified by the

DATE_FORMAT
statement.

Example: OBJ1 is "apple", and word 1 for the object "apple" has been defined
as "an". The command

SAY Just #W11 #OBJ1!

will then cause the character to say

Just an apple!

1.10 GRAAL Commands

GRAAL Commands:

These are all the commands that can be used in the
ACTION
,
DACT
, and
LACT
statements, as well as in cutscene files.

General program flow control

~W(ait)~~~~~~~~~
Make a pause

~EXIT~~~~~~~~~~~
Stop searching for commands to execute

~REDO~~~~~~~~~~~
Re-run current input sentence

002e4fd0-0 9 / 123

~CUTSCENE~~~~~~~
Execute a cutscene

~MARK~~~~~~~~~~~
Mark current position *NEW*

~RESUME~~~~~~~~~
Resume marked position *NEW*

~QUIT~~~~~~~~~~~
Quit GRAAL

Timed events

~DOAFTER~~~~~~~~
Set a timer *NEW*

~CANCEL~~~~~~~~~
Cancel a timer *NEW*

Dialogue control

~DSET~~~~~~~~~~~
Start / change a dialogue

~LINE~~~~~~~~~~~
Change dialogue line number

~EDLG~~~~~~~~~~~
End a dialogue

Sentence control

~OBJ1~/~OBJ2~~~~
Change object number

~VERB~~~~~~~~~~~
Change verb number

Room control

~GOTO~~~~~~~~~~~
Go to a new room

~SETRF~~~~~~~~~~
Set room flag value *NEW*

~ADDRF~~~~~~~~~~
Add to room flag value *NEW*

~DECRF~~~~~~~~~~
Decrease room flag value

~SHOWEXIT~~~~~~~
Show a hideen exit *NEW*

~HIDEEXIT~~~~~~~

002e4fd0-0 10 / 123

Hide an exit *NEW*

"Speech"

~SAY~~~~~~~~~~~~
Make character speak

~THINK~~~~~~~~~~
Make character think

~RESP~~~~~~~~~~~
Make speaking partner respond

Object manipulation

~HANDLE~~~~~~~~~
Make character handle object *NEW*

~PICK~~~~~~~~~~~
Make character pick up object

~GET~~~~~~~~~~~~
Add object to inventory

~REMOVE~~~~~~~~~
Remove object from inventory

~NAME~~~~~~~~~~~
Alter the name of an object

~ICON~~~~~~~~~~~
Alter the icon image for inventory *NEW*

~PREP~~~~~~~~~~~
Alter the preposition for an object

~NEWOBJ~~~~~~~~~
Create or modify an object

~SETOF~~~~~~~~~~
Set object flag value *NEW*

~ADDOF~~~~~~~~~~
Add to object flag value *NEW*

~DECOF~~~~~~~~~~
Decrease object flag value

Object display

~OMOVE~~~~~~~~~~
Move and animate object

~SHOW~~~~~~~~~~~
Show object *NEW*

~HIDE~~~~~~~~~~~

002e4fd0-0 11 / 123

Hide object

~OBJONTOP~~~~~~~
Put object on top of other objects *NEW*

Main character display

~CBOB~~~~~~~~~~~
Change character image

~CMOVE~~~~~~~~~~
Move character

~MOBJ~~~~~~~~~~~
Move character next to object

~MEXIT~~~~~~~~~~
Move character to exit

~CPOS~~~~~~~~~~~
Change character position

~CHAR~~~~~~~~~~~
Hide / display character

Floor control

~FLOOR~~~~~~~~~~
Define floor

~NFLOOR~~~~~~~~~
Set number of floors

~SETFLOOR~~~~~~~
Change character’s floor

Audio control

~TRACK~~~~~~~~~~
Soundtracker module control

~SAMLOAD~~~~~~~~
Load raw or IFF sample

~SAM~~~~~~~~~~~~
Sample control

Graphics control

~CLPART~~~~~~~~~
Load a clipart picture file

~BOBS~~~~~~~~~~~
Grab BOB images from clipart picture

~HOTSP~~~~~~~~~~
Alter the hotspot of an image

002e4fd0-0 12 / 123

~LIGHTS~~~~~~~~~
Fade scene area in or out

~COLOUR~~~~~~~~~
Change a single colour

~FADE~~~~~~~~~~~
Fade one colour to another

~CAMERA~~~~~~~~~
Pan the camera to any part of background

~TITLE~~~~~~~~~~
Display / remove a title screen

~TYPE~~~~~~~~~~~
Type text on title screen

~TEXT~~~~~~~~~~~
Display text in scene area *NEW*

~BOBON~~~~~~~~~~
Show a BOB

~BOBOFF~~~~~~~~~
Remove a BOB

~PBOB~~~~~~~~~~~
Paste a BOB image

Time and date manipulation

~SETDATE~~~~~~~~
Set the date *NEW*

~SETTIME~~~~~~~~
Set the time *NEW*

~ADDTIME~~~~~~~~
Advance the time *NEW*

~SAVETIME~~~~~~~
Save the current time and date *NEW*

~RESTORETIME~~~~
Restore the saved time and date *NEW*

Restore the saved time and date Special Cutscene commands:

~NOBREAK~~~~~~~~
Disable [Esc] in cutscene

~FINAL~~~~~~~~~~
Marks cutscene [Esc] resume point

002e4fd0-0 13 / 123

1.11 GRAAL Conditions

GRAAL Conditions:

These are the conditions that can be used in the
ACTION
,
DACT
,
LACT
, and

LINE
statements.

~IFOBJ~/~IFOBJ2~~~~~
Test objects in the input sentence

~IFOF~/~IFOF2~~~~~~~
Test object flags *NEW*

~IFROOM~~~~~~~~~~~~~
Test current room

~IFRF~~~~~~~~~~~~~~~
Test room flags *NEW*

~IFCARR~/~IFNOTCARR~
Test if object is in inventory

~IFPICK~~~~~~~~~~~~~
Test if object can be picked up

~IFTYPE~~~~~~~~~~~~~
Test object types

~IFSPOS~~~~~~~~~~~~~
Test room starting position

~IFCBOB~~~~~~~~~~~~~
Test current character image *NEW*

~IFFLOOR~~~~~~~~~~~~
Test the current floor *NEW*

~IFDATE~~~~~~~~~~~~~
Test the date *NEW*

~IFTIME~~~~~~~~~~~~~
Test the time *NEW*

~IFWEEKDAY~~~~~~~~~~
Test the day of the week *NEW*

002e4fd0-0 14 / 123

1.12 animation sequences

Basics about GRAAL Animation

Most simple animation sequences used in GRAAL have the following format:

A n,(image,time)(image,time)(image,time)...(image,time)

n is a number deciding how many times the animation sequence is played - in
GRAAL, it is set to 0 in most cases, which means the animation will go on
"forever". Forever in this case means "until GRAAL decides to put a stop to
it".

image is an image number.

time is the time the image is displayed before the next one comes on screen
(in 50ths of a second on PAL machines).

Example: A 0,(RBOB1,12)(RBOB2,12)(RBOB3,12)(RBOB4,12) would play the
sequence of four room BOB images over and over again. Note that the commas
are not GRAAL parameter separators in this case - they are all part of the
same sequence definition!

1.13 The GRAAL player interface

The GRAAL Player Interface

Although the graphics of the player interface can be changed very much to
your liking, all GRAAL games play in pretty much the same way. It presents
the alternatives to the user in a very clear and precise way to let them
know exactly what objects can be manipulated and what options are available
at any time.

This is an attempt to explain the elements of GRAAL’s intuitive control
method. which is really much harder than just doing it:) It also contains
some "style guide" tips...

SENTENCE AND OBJECT DISPLAYS:
=============================

OBJECTS IN THE SCENE AREA:

As soon as the mouse cursor moves over an object with a name consisting of
anything but an empty string, its name appears above the cursor.

IF there is a default command associated with the object, AND neither a verb
or other object has actually been clicked by the player, the default command
for the object beneath the mouse cursor is shown in the sentence box.

IF a verb has been previously clicked, the name of the object also appears

002e4fd0-0 15 / 123

in the sentence box. IF the verb / object combination requries a second
object to beclicked, the appropriate preposition is also displayed in the
sentence box.

OBJECTS IN THE INVENTORY:

Currently, the default verb or object name is NOT displayed by just moving
the mouse cursor over an object in the inventory. However, all objects that
can be put in the inventory should have the default command LOOK, so that a
right mouse-button click looks at the inventory object.

VERBS:

IF you move the mouse cursor over a verb in the command area, AND no verb
has been clicked, the name of the verb appears in the sentence box.

EXITS:

If you move the mouse pointer over an exit, and the name of the exit is
anything but an empty string, its name apperas above the mouse cursor. Note
that object and exit cursor texts in most cases SHOULD be coloured
differently, so that players don’t accidently leaves a room and wastes a lot
of time.

KEYBOARD KEYS
=============

PLAYER KEYS

These keys are avaliable regardless of whether the system is in developer or
runtime mode:

S and L both bring up the same save/load requester.
space puts the game in pause mode. Any key continues.
F displays the amount of free memory (mainly for

debugging purposes.)
V displays the adventure name and version information.
I increases the speed of sentence displays.
D decreases the speed of sentence displays.
Q quits the game. (May be disabled by the DISABLE_QUIT:

statement, is you provide another way to QUIT.)

DEVELOPER KEYS

G brings up the monitor screen.
R starts a macro recording. Pressing R again stops the

macro recording and asks for a name for the new macro.
P asks for a macro name, then starts playing it.
ctrl+c aborts GRAAL. Use only in emergencies, as this does

not clean up memory, leaves FONTS: assigned to RAM:FONTS, etc.
leftA+m (A="Amiga") switches between GRAAL and Workbench. Note that

002e4fd0-0 16 / 123

programs running concurrently will be sluggish, and only
the fonts in your GRAAL FONTS: drawer will be available.
(That’s why I have included the DPAINT font in the drawer,
because I sometimes need to run that in parallell...)

1.14 IFOBJ / IFOBJ2

IFOBJ Condition

Test an object in the current sentence

IFOBJ obj|list

This condition is TRUE if the object number of OBJ1 is equal to obj, or to
any one of the objects in a list.

IFOBJ2 object number | list

Same thing, but checks OBJ2.

1.15 IFPICK

IFPICK Condition

Test if an object can be picked up

IFPICK [obj]

This condition is TRUE if OBJ1 (default) or the specified object can be
picked up.

Example:

IFPICK;MOBJ;HANDLE;PICK;HANDLE -1

Move to object and pick it up only if it is defined as "pickable"!

1.16 IFOF

IFOF Condition

Test the value of an object flag

IFOF [obj,]flag<op>value|list

002e4fd0-0 17 / 123

This condition is TRUE if the flag of OBJ1, or the specified object, passes
the test (see <op> below).

IFOF2 flag<op>value|list

This condition is TRUE if the flag of OBJ2 passes the test. This form is
mainly kept for backwards compatibility - specify the object number of OBJ2
in the format above instead, if you have a choice.

<op>

op an be any of the standard logical operators: =, >, <, <>, >=, <=

value

The value can be a fixed integer number or a reference to another flag. The
format for flag references is #R#roomnumber#flag# or #O#objectnumber#flag.

NOTE: flag references can only be used when testing a single value. That is,
you cannot specify a list of flag references to test.

list

If a list of values is specified, the condition is true if one of the list
values makes the condition true.

(There is no point in specifying a list if the operator is <> - c’mon, think
about it!!)

Examples:

IFOF 2=3

is true if object flag 2 of OBJ1 is 3

IFOF 4,2>3

is true if object flag 2 of object 4 is greater than 3

IFOF 4=2|4|6|8

is true if object flag 2 of object 4 is 2,4,6, or 8.

IFOF 7,4<>#R#3#1#

is true if object flag 4 of object 7 is not equal to room flag 1 of room 3.

1.17 IFROOM

002e4fd0-0 18 / 123

IFROOM Condition

Test the current room

IFROOM room|list

This condition is true if the current room matches the room number(s)
specified.

1.18 IFRF

IFRF Condition

Test the value of a room flag

IFRF [room,]flag<op>value|list

The operator <op> can be any of the following logical operators:

=, <, >, <>, >=, <=

The IFRF condition works the same way as the
IFOF
condition, so click that

to see a number of examples.

1.19 IFCARR / IFNOTCARR

IFCARR Condition

Test if object is in inventory

IFCARR [obj]

This condition is TRUE if the specified object is in the inventory. If no
object number is specified, OBJ1 is assumed.

IFNOTCARR [obj]

TRUE if the object is NOT in the inventory.

1.20 IFTYPE

IFTYPE Condition

002e4fd0-0 19 / 123

Test if an object is of specified type(s)

IFTYPE type|list

This condition is TRUE if the type character matches any of the characters
defined in the object type for OBJ1. For example, in standard GRAAL
notation, an object defined as DW is (D)ead and made of (W)ood. IFTYPE D
would be true, as would IFTYPE S|W (checking if the object is of either
stone or wood).

IFTYPE2 type|list

This condition checks OBJ2 according to the same rules as described for OBJ1
above.

1.21 IFSPOS

IFSPOS Condition

Test which starting position was last used

IFSPOS spos|list

This condition is TRUE, if the last GOTO command (or START_ROOM statement)
pointed to the specified starting position (= START_POS statement).

Its main use is setting the room up in different ways in DACT statements,
depending on which entrance was being used.

1.22 IFCBOB

IFCBOB Condition

Test the currently displayed character image

IFCBOB image|list

This is TRUE if the image used to display the main character matches the
number given in the condition. It could, for example, be useful in creating
"stall anims" (see

DOAFTER
) and other main character animations that should

look different depending on the main character’s current appearance.

1.23 IFFLOOR

002e4fd0-0 20 / 123

IFFLOOR Condition

Tests the current floor

IFFLOOR floor|list

This condition is true if the main character is currently on any of the
specified floors.

1.24 IFDATE

IFDATE Condition

Test the game-date

IFDATE =|>|<date

date

must be in the format year*10000+month*100+date. For example, August 1, 1996
is specified as

19960801

The date can also be specified as a reference to a room or object flag
holding a date value (see SETOF and SETRF). The format is
#R#roomnumber#flag# or #O#objectnumber#flag#.

Examples:

IFDATE =19960801

is true if GRAALs calendar is equal to August 1, 1996.

IFDATE <19960801

is true if GRAAL calendar has not yet reached August 1, 1996

IFDATE >19960801

is true if the date has passed.

IFDATE <#R#4#1#

is true if the date is less than the value held in room flag 1 of room 4.

002e4fd0-0 21 / 123

1.25 IFTIME

IFTIME Condition

Test the game-time

IFTIME =|>|<time

time

must be specified as hours*100+minutes (and with the hours in 24-hour
format).

So, 2:30 pm (or 14:30 in 24-hour format) is specified as

1430

The time can also be sepcified as a reference to a room or object flag
holding a time value (see SETOF and SETRF). The format is
#R#roomnumber#flag# or #O#objectnumber#flag#.

Examples:

IFTIME =1130

is true if the game clock is 11:30

IFTIME <1130

is true if the clock is less than 11:30

IFTIME >1130

is true if the clock is past 11:30

IFTIME <#O#1#8#

is true if the time is less than the value held in object flag 8 of object
1.

1.26 IFWEEKDAY

IFWEEKDAY Condition

Tests the day of the week

002e4fd0-0 22 / 123

IFWEEKDAY day_number|list

This condition is true if the weekday, according to the in-game calender, is
matched by the number(s) specified. 1=Monday, 2=Tuesday, ... 7=Sunday.

Are your shops open on Sunday?

1.27 W(ait)

W Command

Wait nn vertical blanks.

W vbls

This command creates a pause. The time is measured in vertical blanks, which
occurs at the rate of 50 per second for PAL systems and 60 per second for
NTSC systems. On a PAL system,

W 50

would cause a one second pause.

The W command allows the player to end the pause before the specified time
by pressing the full stop (.) or escape key.

(The escape key, when used in a cutscene, also causes a skip to the FINAL
section of the cutscene.)

1.28 EXIT

EXIT Command

Ends the execution of commands to handle the current input sentence from the
player.

EXIT

is used when all actions for a user sentence has been performed, and you do
not wish to search further in the .room, .section, and graal.main files for
entries that match the sentence. It is used in ACTION: and DACT: statements,
and combined with EDLG to end dialogues.

See also:
EDLG
,
REDO

1.29 REDO

002e4fd0-0 23 / 123

REDO Command

Re-run the scripts after having changed the player’s input sentence.

REDO

This command is used after having changed the current sentence contents with
the OBJ1, OBJ2 and VERB commands. The whole idea is that sometimes you want
exactly the same actions performed for different sentences, and using REDO
is easier and less space-consuming than copying all the actions. For
example, if you want the same actions taken for USE BOOK and OPEN BOOK, you
can replace the verb USE (3) with the verb OPEN (4) and then start over with
checking for appropriate actions. Example, assuming the book is object 1:

ACTION: 3;IFOBJ 1;VERB 4;REDO

The checking will start over with the first ACTION: statement in the same
file, but now looking for actions for OPEN BOOK rather than USE BOOK, which
was what the player entered. (Not to worry, the player will never see what
is going on!)

1.30 CUTSCENE

CUTSCENE Command

Loads and executes contents of a cutscene file

CUTSCENE file name,S|N|F|NF|H

Rather straight forward, this one. You only have to remember that cutscenes
can only contain commands and not conditions, and also note the effect the
second parameter has on the cutscene indicator (in Olaf’s case, the movie
camera icon) that is shown instead of the command buttons while a cutscene
is being played.

S

Cutscene indicator will be shown as normal and taken away when this cutscene
has finished playing.

N

The whole command area will disappear during the cutscene, and return when
the cutscene has finished playing.

F

The cutscene indicator will appear as normal but remain on screen when this
cutscene finishes. This should be used if several cutscenes are played in
sequence, or when cutscenes are "nested" (=called from inside other
cutscenes).

NF

002e4fd0-0 24 / 123

The command area will disappear during the cutscene and remain hidden until
a cutscene command containing the "N" parameter restores it.

H

The cutscene indicator will not be used at all. Use for short cutscenes and
cutscenes with the NOBREAK command, if appropriate.

See also:
NOBREAK

1.31 QUIT

QUIT Command

Cleans up and quits GRAAL

QUIT

This command simply kills GRAAL. Use it after displaying an end-of-game
screen, for example.

1.32 DOAFTER

DOAFTER Command

Sets a timer do execute events when a certain time period has elapsed

DOAFTER interval,event object,device

GRAAL has three "timer devices" which can be used to make things happen
after a certain period of time or at (almost) regular intervals. Once set
up, they continue to operate until a

CANCEL
command defuses them.

Possible uses are machinery where a sequence of actions must be carried out
within a certain time limit, rooms where exits close if you take too long,
updating of time data, etc.

interval

This is the timer interval in seconds. (Or, alas, in 5/6ths of seconds if
you are an NTSC user. That’s standards for you!) If you specify an interval
like "10-50", this means the interval will be a random number between 10 and
50. However, once the interval has been set, it remains constant as long as
the timer operates - unless it is changed by a new DOAFTER command. Also,

002e4fd0-0 25 / 123

timer device "0" is a little different - see below.

event object

What happens when the interval has elapsed? GRAAL starts looking for ACTION:
statements for the special verb number -1, that’s what. And which of those
will it use? That depends on the event object, which can be any number. For
example, if the event object is set to 3, GRAAL will execute statements
beginning with

ACTION: -1;IFOBJ 3;

Of course, you may choose not to test on the object number, if you only use
the one timer and intend to always run through all the timer actions.

Control is returned to the player with an EXIT command, same as always.
Before the EXIT command, you may wish to put one of the following:

* A new DOAFTER command for the same device, altering its function
or the time interval

* A CANCEL command, defusing the timer.

device

This is the timer device, which is a simple number from 0 to 2. Each device
is its own little time bomb - however, device 0 works in a slightly
different way from the rest.

Device 0 keeps track of how long it has been since the player’s last input
to the game, rather than counting how long it’s been since the DOAFTER
command was given. Each mouse click is counted as an action, and thus resets
the timer. This timer is also completely disabled during dialogues.

This means that timer 0 can be used for things like "stall anims" - making
the character urge you to do something if you take too long, for example. (A
classic example of this sort of timer is the one in that good old text
adventure, "the Hobbit": "You wait... time passes. And it did.)

Limitations to the timed events:

Because GRAAL only checks for elapsed timers when it waits for player input
in dialogue or command mode, the timing is very approximate. For example, if
a timer elapses while your hero is making a long speech, the timed event
will occur only after the speech stops and when return normally should have
returned directly to the player.

In other words, you will have to think about how you set the action in
scenes where timing events are critical. Preferably, there shouldn’t be long
sequences without checks for player input occuring at the same time.

Also note that execution of the timer commands in the ACTION: statements
does not multitask, and if two or three timers elapse at the same time, the
commands for each timer will be carried out in sequence, starting with timer
0 and ending with timer 2, possibly putting the timing off even further from
what was expected.

002e4fd0-0 26 / 123

Finally, NEVER use timers for things which can be achieved with repeating
animation patterns - they are much more accurate in the timing and put much
less strain on the system!

See also:
CANCEL
command

1.33 CANCEL

CANCEL Command

Cancels the function of a timer

CANCEL device

This command stops a timer started with the
DOAFTER
command.

device

is the device number of the timer (1-3).

See also:
DOAFTER
command

1.34 DSET

DSET Command

Handles dialogue alternatives

DSET dlg[,com1,com2,...,comn]

Tell the dialogue dlg how to behave using a number of commands, such as:

+n add line n to the available set of lines

-n take away line n from the line set temporarily, can be
restored by another + later on

Nn make line n never appear again in this game, even if a DSET +
appears later on.

Ss Save the current status (the set of alternatives the player

002e4fd0-0 27 / 123

sees) before "branching" in the dialogue. s is a set of saved
lines, and can be 1-3

Rs Restore a previously saved dialogue status from set 1-3

E Erase all currently displayed dialogue lines, equal to giving
a "-" command for each line. (This is also done automatically
by the S (Save) command.

If you are not already involved in the dialogue, DSET will put the dialogue
control area onto the screen instead of the normal control area.

If no commands are specified, the dialogue is only refreshed. However, even
this may alter the set of alternatives the player actually sees - because
the availability of the alternatives also depend upon conditions set in the
LINE: statements themselves, and those conditions may be changed between
DSET commands.

Remember that although dialogues are specified in the room files, their
numbers must be unique for the entire game.

The special command "E" takes away all current dialogue alternatives. It is
mostly used in conjunction with the save/restore function when you "branch
out" in a dialogue and want to present a completely new set to alternatives
to the player. For example, this shows a "branching out" of dialogue 4:

DSET 4,S1,+12,+13,+14

saves the current dialogue status in set 1, clearing all old input
alternatives at the same time, and replaces them with lines 12, 13 and 14.

The special command "L" allows you to alter the dialogue status without
showing what you are doing in the dialogue control area. This is mainly used
to restore the dialogue to its proper status just before ending the
dialogue, so that the proper alternatives will be in place when the player
starts talking to the same dialogue partner the next time. For example,
before we leave dialogue 4 we know that we want to go back to the way things
looked before we saved the status in set 1:

DSET 4,L,R1;EDLG;EXIT

restores the previously saved dialogue status for dialogue 4 just before the
dialogue is ended, without the user being disturbed by flickering
alternatives in the dialogue control area. However, the next time the player
engages in this dialogue, the old alternatives will be back to choose from.

See also:
EDLG

1.35 LINE

LINE Command

Alter the line chosen in a dialogue

002e4fd0-0 28 / 123

LINE line_no

This command, i conjunction with th REDO command, lets you use the same
reactions (LACT: statements) for a number of different dialogue alternatives
- much easier than copying all commands into a number of LACT:s.

Example: You wish the reactions to line 5 in a dialogue to be exactly the
same as those for line 3. Simply specify this:

LACT: 5;LINE 3;REDO

The program now goes through the LACT:s again, now looking for those who are
connected to line 3 instead of line 5 which was actually chosen.

See also:
REDO

1.36 EDLG

EDLG Command

Ends a dialogue session

EDLG

This command ends the dialogue. The normal Control Area is put back on
screen instead of the Dialogue Control Area. The last set of dialogue lines
will be present as default if the dialogue is resumed later on.

Normally, you would not want to evaluate any more line action (LACT:)
statements after having decided to end the dialogue. Therefore, you should
normally put an EXIT command right behind the EDLG:

EDLG;EXIT

See also:
DSET

1.37 OBJ1 / OBJ2

OBJ1 / OBJ2 Command

Alters the object number for OBJ1 or OBJ2.

OBJ1 obj
OBJ2 obj

These commands are used in two main ways:

a) to temporarily put another object number in the place of OBJ1 or OBJ2 in

002e4fd0-0 29 / 123

order to manipulate an object using other commands. In this case, you only
need a simple OBJ1 or OBJ2 without any parameters to change the object
number back to what it originally was when you are through manipulating the
object you specified with "obj". For example, imagine you are about to open
a can of gasoline in a room with a lit candle. The gasolin has object
number 15 and is currently OBJ1, the object number for the candle is 20.

...OBJ1 20;MOBJ;HANDLE;SHOW 20, , ,10;SAY I put the light out first;HANDLE
-1;OBJ1 15;...

would be an easy way to switch from the gasolin, operate the candle, and
then switch back to working with the gasolin.

b) to alter the object handled and then use the
REDO
command to run through

all action statements again.

Note: Exit numbers used to check which exit was clicked is actually a
special use of the OBJ1 variable. This must be remembered when coding
ACTION: statements for verb 0 (= exit click).

See also:
VERB
,
REDO

1.38 VERB

VERB Command

Alters the current verb

VERB <verb number>

Use this to alter the verb in the current sentence. Mainly used before the

REDO
command to make one action synonym to another.

If no verb number is specified, the verb number before the last VERB <verb
number> command is restored (but why you should want to do that, I don’t
know at this stage.)

See also:
OBJ1/OBJ2
,
REDO

1.39 ROOM

002e4fd0-0 30 / 123

ROOM Command

Alter the current room

ROOM <room number>

A bit obsolete, this one. You can set flags for rooms other than the current
using a special form of the SETRF command, so this one may soon be deleted.

Anyway, specifying ROOM without the parameter brings back the room number
that was in effect before the last ROOM <room number> was called, just like
OBJ1/OBJ2 can restore the previous object if used without the parameter.

1.40 MARK

MARK Command

Mark the current game position

MARK [number]

This saves the current game state.

number

If number is specified, this command acts as a "save game" to RAM: (which
can take some time).

Any number of MARKs can be stored using unique identification numbers to
tell them apart. Just keep in mind that each MARK creates a file of about
20K in RAM:, and that the command takes a few seconds to perform. (Older
machines can really struggle in comparison with 1200s or accelerated ones,
so do not use it excessively.)

If a number is not included, the position is saved to a string of variables
in memory, which is somewhat faster. However, only one position can be saved
this way.

The position can be re-created later using a RESUME command.

You can use this in a number of ways:

* Implement your own "save to RAM:" commands.

* Provide an "ooops!" function, allowing the player an easy way to get
back into a game where something just has gone terribly wrong...

* Cut away to cutscenes using other rooms and restore the game position
afterwards, not having to care exactly what the scene looked like when
the jump to the cutscene occured.

* Use a MARK as the very first command in the game and provide a "try
again" option from an end-of-game screen.

002e4fd0-0 31 / 123

See also:
RESUME
command

1.41 RESUME

RESUME Command

Resume the action at the spot saved with the MARK command

RESUME [number]

number

The optional number must correspond to the one of a previous MARK command.
See the MARK command for a detailed description of what is going on.

As with normal "load game" operations, GRAAL searches for and executes any
ACTION: statements starting with the special verb number -2 before lighting
the scene and returning control to the player. This is to enable you to
perform any special actions that need to be taking, for example restoring
global BOB images (which are not saved by a "save game" or a MARK command).

See also:
MARK
command

1.42 SAY

SAY Command

Makes the main character speak a sentence (or two).

SAY Any kind of text goes here...

This command uses the animations in the TALK_MAP statements of the
graal.main file to animate the character during the length of the text
display. The text display may use some

special~characters
to perform line

breaks, put in variable values, etc.

Note that the SAY command can only be used if the main character is on
screen, not if a

CHAR~OFF
or other command has hidden it!

See also:
THINK

002e4fd0-0 32 / 123

1.43 GOTO

GOTO Command

Move to another room

GOTO <room number | list>,<entrance | list>

This command automatically moves to a new room - it is not needed when using
exits in the normal way, but is handy in cutscenes and the like. As usual,
if a list of alternatives is specified, one is choosen at random. Could be
used in maze-like surroundings, perhaps?

See also:
MARK
,
RESUME

1.44 THINK

THINK Command

Displays text above the main character

THINK Any kind of text goes here...

This command behaves just like
SAY
, except it doesn’t automatically animate

the character. Good for "thinking" as well as using special animation
sequences shown using MOVE commands instead of the standard TALK_MAP
animations.

See also:
SAY

1.45 RESP

RESP Command

Make a dialogue partner respond

RESP R|S,dialogue number,sentence

R means after the character has "spoken", it will be displayed using its
default image or animation again. S means the image used just before the
RESP command was called will be used again.

the dialogue number refers to the number assigned to this dialogue by the

DLG:

002e4fd0-0 33 / 123

statement in the graal.main file.

The sentence is constructed just like sentences used in, for example, the

SAY
and

THINK
commands.

See also:
SAY
and

THINK
commands,

DLG
statement

1.46 HANDLE

HANDLE Command

Make the main character handle an object

HANDLE [objno|LOW|MID|HIGH|-1]

HANDLE on its own uses the HANDLE_MAP animations specified in the graal.main
file to make the main character "operate" OBJ1.

HANDLE objno makes the character operate the specified object.

HANDLE LOW|MID|HIGH uses the "handle animation" - a general, convenient way
to stretch out a hand without having to resort to CBOB or OMOVE 0,...
commands.

HANDLE -1 resets the main character to what he/she looked like just before
the HANDLE command took effect.

1.47 PICK

PICK Command

Pick up an object

PICK [<object number>]

Adds the specified object (or OBJ1, if no object number is specified) to the
inventory and erases it from the scene area. This command is often preceded
by a MOBJ and a

HANDLE
command to show on screen what’s going on.

There is no DROP command that automatically replaces an object on screen.

002e4fd0-0 34 / 123

the main reason is that it isn’t worth it: For every possible location the
object could be dropped, you would have to specify a place for it in the
scene area.

The most comfortable way to dispose of objects is letting the main character
do so automatically when they have filled their purpose, using the

REMOVE
command.

See also:
GET
,
REMOVE

1.48 GET

GET Command

Add an object to the inventory

GET <object number>,U|N

The object is added to the inventory. Use "U" if the inventory display
should be updated (which is the normal procedure), "N" if the inventory
should be left unaffected, for example if GET is used during a dialogue, or
you make a number of consecutive GETs letting only the last one update the
display.

The difference between GET and
PICK
is that GET does not take any notice of

the object’s previous whereabouts.

See also:
PICK
,
REMOVE

1.49 REMOVE

REMOVE Command

Removes an object from the inventory

REMOVE <object number>,N|U,<room>

Removes the object from the inventory. If "U" is specified, the inventory
display is updated. The object is placed in the specified room. If the room
is specified as 0, the object "disappears" forever!

Note: This command can also be used to put an object in any room except the
current at any time. In this case, specify "N" to skip the inventory

002e4fd0-0 35 / 123

updating. To put an object in the current room, the
SHOW
command must always

be used.

See also:
GET
,
PICK

1.50 NAME

NAME Command

Alter the name of an object

NAME new name[,word1,word2,word3]

Very often in an adventure, an object is "transformed" - that is, one object
appears while another disappears at the same time. (For example, a parcel is
opened to reveal a book - the parcel is gone, the book exists.) To save
memory, it makes sense to use the old object number for the new object also,
since there is no risk of confusion - the two objects never appear at the
same time.

The command NAME alters the name of the current OBJ1 (see the
syntax
conventions). In addition, the determination words (see the
OBJECT
statement) may be altered to suit the new object description.

See also:
OBJ1
command,

OBJECT
statement.

1.51 ICON

ICON Command

Alter the icon used for inventory display

ICON [objno,]image

This command does a bit of what the NAME command does for a text inventory,
but you should probably use both the NAME and the ICON command when changing
properties for objects in an icon display - NAME still determines the text

002e4fd0-0 36 / 123

shown when the object is referred to in the game, although it doesn’t appear
in the inventory list...

1.52 PREP

PREP Command

Alter the preposition of OBJ1

PREP [preposition]

By specifying a preposition for an object, the verb USE will assume this
object must be used in conjunction with something else, and therefore awaits
the input of a second object before checking for actions.

Specifying PREP without a preposition will do the opposite, allowing an
object to be used on its own again.

1.53 NEWOBJ

NEWOBJ Command

Creates or modifies an object

NEWOBJ: object_parameters

This command acts exactly like the OBJECT: statement - only here, the
parameters are separated by commas instead of semi-colons, so you can not
place an animation sequence containing commas as the default object image.
Also note that this command resets all object flags to 0.

See also:
OBJECT
statement

1.54 SETOF

SETOF Command

Assigns a value to an object flag

SETOF [<object number>,]flag=value|list

If no object number is specified, OBJ1 is assumed. The flag is set to the
value.

002e4fd0-0 37 / 123

If the value is specified as #DATE, the value is the current in-game date in
the format year*10000+month*100+date, e.g. 19960801 for Augist 1, 1996

If the value is specified as #TIME, the value is the current in-game time in
the format hour*100+minutes, e.g. 2355 for 11:55 pm.

The value can also be a reference to a room or object flag. The format is
#R#roomnumber#flag# or #O#objectnumber#flag#

For example,

SETOF 3,6=#R#3#4#

would set flag 6 for object 3 to the value held in room flag 4 of room 3.

If a list of values is specified, one of the values is chosen at random. For
example,

SETOF 2=3|7|9

would set object flag 2 for object 1 to either 3, 7, or 9. A maximum of 12
values may be specified in a list.

See also:
ADDOF
,
DECOF
,
IFOF

1.55 ADDOF

ADDOF Command

Adds to or subtracts from a flag value

ADDOF [object,]flag[,value]
ADDOF2 flag[,value]

ADDOF affects a flag for an object. If no value is specified, 1 is added.
Negative values may be used, thus subtracting from the flag value.

ADDOF2 affects OBJ2 - this form is kept mainly for backwards compatibility,
you can achieve exactly the same by specifying object 2’s object number in
most cases...

DECOF is used for special "countdown" purposes.

The value can be a reference to a room or object flag. The format is
#R#roomnumber#flag# or #O#objectnumber#flag#.

For example,

ADDOF 1,#O#4#2#

002e4fd0-0 38 / 123

would add the value held in object flag 2 for object 4 to object flag 1 for
OBJ1.

Another example:

ADDOF2 4

would add 1 to object flag 4 of OBJ2.

See also:
SETOF
,
DECOF
,
IFOF

1.56 DECOF

DECOF Command

Counts down the flag value to zero

DECOF flag
DECOF2 flag

DECOF is used for OBJ1, DECOF2 for OBJ2. The flag value is decreased by 1
until it reaches zero, then it stays there.

See also:
SETOF
,
ADDOF
,
IFOF

1.57 SETRF

SETRF Command

Assigns a value to a room flag

SETRF [<room number>,]flag=value|list

If no room number is specified, the current room is assumed. The flag is set
to the value.

If the value is specified as #DATE, the value will be the current in-game
date in the format year*10000+month*100+date, e.g. 19960801 for August 1,
1996.

If the value is specified as #TIME, the value will be the current in-game

002e4fd0-0 39 / 123

time in the format hours*100 + minutes, e.g. 2355 for 11:55 pm.

For example,

SETRF 2,1=5

would set room flag 1 for room 2 to 5

The value can be a reference to a room or object flag. The format is
#R#roomnumber#flag# or #O#objectnumber#flag#

For example,

SETRF 2=#R#2#1#

would set room flag 2 for the current room to the value of room flag 1 for
room 2.

If a list of values is specified, one of the values is choosen at random.
For example,

SETRF 2=3|7|9

would set room flag 2 to either 3, 7, or 9. A maximum of 12 values may be
specified in a list.

SETRF 1,3=#TIME

would set room flag 3 for room 1 to the current game time.

SETRF 0,1=#DATE

would set room flag 1 for room 0 to the current game date. Room 0 is a
"global" room never used as a normal room. Nevertheless, it exists
flag-wise, so its 20 flags can be used to hold "global game values".

See also:
ADDRF
,
DECRF
,
IFRF

1.58 ADDRF

ADDRF Command

Adds to or subtracts from a room flag value

ADDRF [room,]flag[,value]

ADDRF affects a flag for the current room. The number is added to the flag
value. If the number is negative, a subtraction is performed.

002e4fd0-0 40 / 123

The value may be a reference to a room or object flag. The format is
#R#roomnumber#flag# or #O#objectnumber#flag#.

For example,

ADDRF 3,1,#O#5#2#

adds the value held in object flag 2 of object 5 to room flag 1 of room 3.

ADDRF 2

would add 1 to room flag 2 of the current room

ADDRF 2,3

would add 3 to room flag 2 of the current room

ADDRF 5,2,3

would add 3 to room flag 2 of room 5

See also:
SETRF
,
DECRF
,
IFRF

1.59 SHOWEXIT

SHOWEXIT Command

Shows a previously hidden exit

SHOWEXIT exit_no

This restores a previously hidden exit on screen

See also:
HIDEEXIT
command

1.60 HIDEEXIT

HIDEEXIT Command

Hides an exit

002e4fd0-0 41 / 123

HIDEEXIT exit_no

When entering a room, all exit defined by EXIT: statements are always
visible and usable. This command hides the exit. It can be restored later by
the SHOWEXIT command.

See also:
SHOWEXIT
command

1.61 DECRF

DECRF Command

Counts down the room flag value to zero

DECRF flag

DECRF decreases the value of the flag until it reaches zero, then it stays
there.

See also:
SETRF
,
ADDRF
,
IFRF

1.62 CBOB

CBOB Command

Alter the image for the main character

CBOB <image number>

The main character changes to the specified image. The screen (hotspot)
position is not altered.

See also:
CPOS
,
CMOVE
,
OMOVE

1.63 CMOVE

002e4fd0-0 42 / 123

CMOVE Command

Moves the character to a new screen position using the default
WALK_...
animations.

CMOVE x,y,C|P

x and y are the screen (hotspot) coordinates. Use P to end the CMOVE with an
appropriate PAUSE_... image, C" link "ST_PAUSE" 0} image, C to end with a

STILL_...
image. C is mainly used when another CMOVE follows immediately.

See also:
CBOB
,
CPOS
,
OMOVE

1.64 MOBJ

MOBJ Command

Move the main character next to an object

MOBJ [object number]

The main character is moved to the position indicated by the character
offset parameters of the OBJECT statement or command. If no object number is
given, OBJ1 is assumed.

1.65 MEXIT

MEXIT Command

Move character to exit

MEXIT

This command can only be used in an ACTION: 0;... statement, and moves the
character to the exit point for the clicked exit, as specified in the
corresponding

EXIT:
statement

002e4fd0-0 43 / 123

1.66 CPOS

CPOS Command

Alter the character’s screen position

CPOS x,y

Immediately alters the main character’s screen position to x,y (without
walking there like

CMOVE
.) The image is not altered:
CBOB
may be used for

that.

See also:
CBOB
,
CMOVE
,
OMOVE

1.67 CHAR

CHAR Command

Turn main character display on or off

CHAR ON|OFF

CHAR OFF means the main character is not on screen - use for cutscenes,
animated intros and the like. CHAR ON restores the main character to the
position before CHAR OFF.

See also:
CPOS
,
CBOB

1.68 FLOOR

FLOOR Command

(Re-)defines a floor

FLOOR number,x1,y1,x2,y2,floormap1,...,floormapn

This command works exactly like the
FLOOR:

002e4fd0-0 44 / 123

statement, and allows you to
re-arrange floors for a room any way you like. You can make previously
unreachable areas accessible, or quite the opposite.

You must make sure that all floormaps are valid - changing a single floor
may mean you have to use FLOOR commands for other floors to just to change
the floor maps. And if you alter the number of floors, you must also use the

NFLOOR
command to set the new number of floors.

See also:
NFLOOR
and

SETFLOOR
commands,

FLOOR:
statement

1.69 NFLOOR

NFLOOR command

Changes the number of floors in a room

NFLOOR number

Only use this command when you have changes the floor structure, and number
of floors, in a room with the

FLOOR
command.

See also:
FLOOR
and

SETFLOOR
commands.

1.70 SETFLOOR

SETFLOOR command

Informs the system about the main character’s whereabouts in the floor
system.

SETFLOOR floor number

Normally, GRAAL automatically keeps track of on which floor your character
is currently positioned. There are, however, a few commands that may leave
the system unaware about your hero’s whereabouts. These are the

002e4fd0-0 45 / 123

FLOOR
and

OMOVE
commands. If one of these commands places your character on ←↩

another
floor previously, you should specify the new floor number with this command.
Otherwise, strahnge things may happen when the character tries to move
next.

See also:
FLOOR
and

OMOVE
commands, and the

FLOOR:
statement.

1.71 OMOVE

OMOVE Command

Move an object (or the main character) according to specified animation
sequence

OMOVE object number,x,y,speed adjustment,FLIP| ,WAIT| ,animation sequence

The object’s hot spot is moved to the x,y screen co-ordinates. During the
movement, the

animation~sequence
specified in the last parameter is used.

The x and y positions can be set relative to the main character’s current
position using CX+offset and CY+offset. Example:

OMOVE 2,CX+20,CY+0,1,FLIP, ,A 0,(SBOB1,12)(SBOB2,12)(SBOB3,12)(SBOB2,12)

moves object 2 to a position 20 pixels to the right of the main character,
at the normal WALK_SPEED speed, using an animation consisting of four
different images.

If the speed adjustment factor is 1, the speed will be the speed set with
the WALK_SPEED parameter in the graal.main file. A lower number gives
faster" link "ST_WALK_SPEED" 0} parameter in the graal.main file. A lower
number gives faster movement, a higher number gives slower movement.

If FLIP is specified, and movement is from left to right, the images are
used as supplied, but if the movement is from right to left, all images in
the animation sequence are automatically flipped first. Specifying any other
value (such as a blank) means the images are always used as specified.

If WAIT is specified, the entire animation sequence is carried out before
GRAAL continues with the next command. Otherwise, GRAAL will not check if
the animation has been concluded until the next OMOVE command for the same

002e4fd0-0 46 / 123

object. If you put several OMOVE commands for the same object next to each
other, you should specify a blank space instead of WAIT - this eliminates
the brief pauses between OMOVE commands that will otherwise occur. On the
other hand, if the command following an OMOVE is something like a SHOW
command for the same object, always specify WAIT - otherwise the SHOW would
be affecting the object before the animation sequence had a chance to
finish.

OMOVE can be used to move and animate the main character using other
animations sequences than the default. Just specify object number 0 to point
to the main character.

If x and y are left blank, the object is animated using the animation string
at its curent position. Normally, the animation is automatically stopped
when the object reaches the x,y position, and the first BOB image in the
animation sequence will the be used as the still image. When no new x,y
position is given, the animation goes on until another image-manipulating
command for the object is encountered, for example SHOW or CBOB. Example:

OMOVE 0, , ,1,A 0,(11,24)(12,24)

would animate the main character alternating between BOB images 11 and 12
indefinitely. (Well, until the BOB image for the main character is altered
using some other command, anyway.)

See also:
SHOW
,
CMOVE
,
CPOS
,
CBOB
,
HIDE

1.72 SHOW

SHOW Command

Show an object

SHOW object number,x,y,image

If the object number is 0, the commands manipulates the graphics of the main
character.

The image can be a BOB image number, an animation string, or even a pattern
(PTRN) specification.

If x and y are left blank, the position of the object will not be altered,
only the image.

002e4fd0-0 47 / 123

If image is left blank, the object is moved to the new co-ordinates
retaining the previous image.

Note: If the object was in the inventory before the SHOW, it is removed and
the inventory is updated.

Example:

SHOW 3, , ,PTRN 1

would show object 3 in its previous position using the animation sequence
stored in the 1.ptrn file.

Another example:

SHOW ROBJ1,30,70,

would place room object 1 at the new co-ordinates 30,70.

A third example:

SHOW 0, , ,

refreshes the graphics of the main character. This is useful if you have
loaded new global images, for instance.

See also:
HIDE
,
OMOVE
,
CPOS
,
CBOB
,
CMOVE

1.73 HIDE

HIDE Command

Hides an object

HIDE object number

hides the specified object from view (that is, removes it from the current
room). This may often be used in room DACT statements, using room flags to
decide what objects are being shown and not in a particular situation or
phase of the game.

002e4fd0-0 48 / 123

See also:
CHAR
,
SHOW

1.74 OBJONTOP

OBJONTOP Command

Puts the object on top of all other displayed objects

OBJONTOP object number

Sometimes it happens that two objects partly occupy the same space on screen
- one object being displayed on top op the other.

However, the topmost object being displayed properly is not, in itself, a
guarantee that the mouse cursor will actually register it when you move the
cursor across it. If the underlying object is further up GRAAL’s internal
list of objects shown in the room, it is that obejct’s name that will be
shown, which is probably not what you want. And that list was unavailable to
you before GRAAL 2.

The simple remedy is this command. If, when testing your adventure, you find
an object which is unavailable in the manner described above, simply give an
OBJONTOP command for it once it’s been placed in the room - in a DACT:
statement if it is a ROOMOBJect, or right after a SHOW command, for example.

1.75 TRACK

TRACK Command

Handles soundtracker music modules

TRACK <file name | list>,ONCE|LOOP,FILTER|NO

If the file name is different than the last sound tracker file name used, or
no tracker file is currently in memory, the file is loaded and the module
starts playing.

Currently, the ONCE|LOOP parameter doesn’t work - the module always start
again when the end is reached, unless you put a tracker "stop" command in
the tracker module itself.

Specify FILTER if you want the Amiga’s low-pass audio filter to be on while
the module is playing (takes away some high frequencies and hissing
noises.)

TRACK OFF

002e4fd0-0 49 / 123

Stop the module playing

TRACK ON

Resume playing a stopped module

TRACK NO

Stop playing and erase the module from memory (thus freeing memory space).

Notes on tempo:

Currently, GRAAL only supports the old tracker tempo control of "ticks". The
primary tempo is always 33 and the secondary tempo should be set using
tracker commands in the module - between 5 and 7 is usually good.

See also:
SAMLOAD
,
SAMPLAY

1.76 SAMLOAD

SAMLOAD Command

Loads a raw or IFF sample into memory

SAMLOAD <filename | list>

This command loads a raw or IFF sample into memory for later use with the
SAM command.

See also:
SAM

1.77 SAMPLAY

SAM Command

Plays a previously loaded sample

SAM ONCE|LOOP,DEF|<frequency>

Play a sample loaded with a previous SAMLOAD command once or in a loop. DEF
will make the sample play with the default frequency. To raise or lower the
pitch, specify a frequency instead.

SAM OFF

002e4fd0-0 50 / 123

Stop playing a sample.

SAM NO

Stop playing a sample and erase it from memory (thus freeing memory space).

See also: SAMLOAD

1.78 CLPART

CLPART Command

Load a clipart IFF file

CLPART filename

The specified picture file is loaded into memory, where it is used for
grabbing images with the BOBS command.

CLPART OFF

Get rid off a previously loaded clipart file when it is no longer needed.

See also:
BOBS

1.79 BOBS

BOBS Command

Loads BOB images into the image bank

BOBS number of images,starting image,x,y,width,height,x-offset,hotspot

The parameters for this command are exactly the same as for the
BOBS:
statement, except the parameters should be separated by commas (,) ←↩

instead
of semi-colons (;). There is one slight difference in how you specify the
the starting BOB image number (which is the second parameter). This should
be specified as n, SBOBn, or RBOBn, depending on the type of images you
intend to add / replace in the image bank.

This command must be preceeded by a CLPART command.

See also:
CLPART

002e4fd0-0 51 / 123

1.80 HOTSP

HOTSP Command

Alters the hotspot of an image

HOTSP image number,hotspot position

This command is used when you need to make changes to the "3D order" in
which objects and images are displayed on the screen.

A hotspot position of 0 defines the default hotspot at the middle of the
bottom of the image. Any other value defines another hotspot in the y
direction of the image. The y direction is the important one, because it is
the relative position of hotspots in the y direction that determines which
image goes in front of another on the screen.

An unfortunate side-effect of altering the y hotspot is that the x hotspot
position "jumps" from the middle of the image to the left edge - there is no
convenient way for me to avoid this. This means that you have to redisplay
the image on screen with a new SHOW, OMOVE, BOBON or other such command, and
in that command adjust the x position to cancel out the effect of the
hotspot having moved in the x direction as well as in the y direction.

See also:
BOBS
statement

1.81 LIGHTS

LIGHTS Command

Fade scene area out or in

LIGHTS ON|OFF

ON makes the scene area visible. OFF fades the scene area to black. A
LIGHTS ON must always be present in a DACT: statement for a room, otherwise
the screen will stay black and nobody will be able to do very much!

1.82 COLOUR

COLOUR Command

Change a colour

COLOUR [DLY,]<colour index>,<colour value>

The colour is changed to the new value. If you want to manipulate colours in

002e4fd0-0 52 / 123

DACT: statements before the
LIGHTS~ON
command has been issued, begin the

command with the DLY (delay) parameter. This will cause the new colour to
faded in together with the rest when the LIGHTS ON take effect.

See also:
FADE

1.83 FADE

FADE Command

Fade one colour to another

FADE <colour index>,<speed>,<colour value>,WAIT|NOWAIT|STACK

Fades the specified colour to the new colour value with a certain speed. Use
the STACK parameter if several colours should be faded simultaneously -
GRAAL will wait until a FADE command with WAIT or NOWAIT specified and then
also fade all STACKed colours at the same time.

WAIT causes the action to be suspended during the colour fade. NOWAIT means
action will continue while the colours are being faded.

See also:
COLOUR

1.84 CAMERA

CAMERA Command

Pan the camera to any part of the background picture in scene area

CAMERA x_focus

x_focus is the horizontal position GRAAL tries to put in the center of the
scene area. Of course, the pan stops whenever one of the edges of the
background picture comes into view.

Use this command in cutscenes and the like, when you need to move the camera
away from or independently of the main character.

1.85 TITLE

TITLE Command

Show a title screen

002e4fd0-0 53 / 123

TITLE filename,effect

The file is an ordinary iff picture file. The effect can be one of the
following:

number

A previous title picture is gradually dissolved into a new one using a bit
pattern that depends on the number given. Odd numbers, and prime numbers in
particular, are recommended. Some numbers don’t work at all!

FADE

The old picture is faded to black, then the new one is faded in.

CUT

Pictures are just swapped without any special effects. HAM screens should be
handled this way.

See also:
TYPE

1.86 TYPE

TYPE Command

Type text on a title screen.

TYPE font,colour,x,y,effect,text

This command is used to type text on title background screens.

font is 1 or 2, corresponding to the
TITLEFONT:
statements in the graal.main

file.

colour is the colour number

x,y is the printing position. x=-1 means the text will be centered.

effect is SHADOW, SHADOW2 or BORDER, surrounding the text with different
kinds of shading for greater legibility. If no effect is desired, use NONE.

See also:
TITLE

1.87 TEXT

002e4fd0-0 54 / 123

TEXT command

Display text in scene area

TEXT x,y,colour,text

This command uses the same font and pause lengths as the
SAY
,
THINK
, and

RESP
commands, but any text can be used and it is not connected to the ←↩

main
character or a certain dialogue.

x,y

The text is placed centered around these co-ordinates.

If x is set to -1, the text is be centered vertically on screen, no matter
how the background is currently scrolled.

See also:
SAY
,
THINK
, and
RESP
commands

1.88 BOBON

BOBON Command

Places a BOB that is not a GRAAL object on screen.

BOBON bob number,x,y,image

If you are putting a new image on the screen, first make sure the BOB
number is not already in use for any object in the room.

If the BOB is already placed on screen, and x and y are left empty, only the
image is changed and not the position.

If the BOB is already placed on screen, and the image number is left blank,
only the BOB position changes.

See also:
BOBOFF

002e4fd0-0 55 / 123

1.89 BOBOFF

BOBOFF Command

Take away a BOB that is not an object from the screen

BOBOFF bob number

Used to take away BOBs from display that have been put there by the BOBON
command.

See also:
BOBON

1.90 PBOB

PBOB command

Pastes a BOB image

PBOB x,y,image

The image is pasted into the picture without anyway of removing it
afterwards (unlike the BOBON / BOBOFF commands, which actually use a BOB to
display an image).

Use for animated dotted lines and other special effects.

1.91 SETDATE

SETDATE Command

Sets the (game) date

SETDATE year,month,date,weekday

Note that we are talking about the "internal game time", not the system real
time clock...

If any of the weekday, date, or month parameters are left blank, they retain
their old values.

year

Anything you wish, preferably 2 or 4 digits

month

1-12, 1 being January...

002e4fd0-0 56 / 123

date

1-31. The GRAAL calendar can handle the normal lengths of the months, but
does not consider leap-years.

weekday

1-7, 1 being Monday and 7 Sunday. The GRAAL calendar does not check the
historical accuracy of weekday versus date, though (see above).

See also:
SETTIME
and

ADDTIME
commands

1.92 SETTIME

SETTIME command

Sets the time

SETTIME hours,minutes

The time must be set in 24-hour format, regardless of whether it is
presented that way or not (see

TIME_FORMAT
).

Note that we talk about the "in-game clock", not the real-time system clock
here.

See also:
ADDTIME
command

1.93 ADDTIME

ADDTIME command

Advances the clock

ADDTIME hours,minutes

Added time also alters the calendar if needed. Note that this command is
only meant to be used for adding minutes, hours or possibly a day or two -
when jumping further in time, use the

SETDATE
command.

002e4fd0-0 57 / 123

If
TIME_LAYOUT
or

DATE_LAYOUT
is active, the command also updates the time

and/or date displays.

See also:
SETTIME
command

1.94 SAVETIME

SAVETIME Command

Saves the current in-game time and date

SAVETIME

This command is mainly here to make it a little easier to perform operations
on dates and times. Doing "maths" on dates and times manually is not very
fun, so this command lets you use the

ADDTIME
command without loosing the

current time and date forever: Using
RESTORETIME
brings back the saved time

and date.

Example: You wish to store the date and time twelve hours from "now" in room
flag 1 for room 1. This sequence of commands ought to do it.

SAVETIME;ADDTIME 12,0;SETRF 1,1=#TIME;RESTORETIME

1.95 RESTORETIME

RESTORETIME Command

Restores a previously saved time and date

RESTORETIME

Use this command to restore the date and time to that saved with
SAVETIME
.

002e4fd0-0 58 / 123

1.96 NOBREAK

NOBREAK Cutscene Command

Disables [Esc] key in cutscenes

NOBREAK

This can only appear as the very first statement in a cutscene, and tells
GRAAL that the [Esc] key cannot be used to skip this cutscene.

1.97 FINAL

FINAL Cutscene Command

Indicates resume point in cutscene

FINAL

This can only be use in a cutscene. All commands below FINAL will be
executed is the rest of the cutscene was skipped with the [Esc] key.

1.98 graal.main file

graal.main Statements =DEMO=>

Your statements in the graal.main file should appear in the order indicated
here. Although the order makes no difference in some cases, there are times
when statements and commands depend upon previous statements to load the
required resources into memory. This sequence of events is tested and it
works!

("Number" below: ONE means statement occurs only once. ANY means zero to any
number of times.)

Statement Number Description

~NAME~
one Name of the adventure

~VERSION~
one Version number of the adventure

~MAX_CACHE~
one Maximum number of files in memory cache

~N_VERBS~
0-1 Number of verbs, default is 9 *NEW*

002e4fd0-0 59 / 123

~VERB_ZONE~
any position and size of each verb "button" *NEW*

~VERB_TEXT~
any Message when pointing to a verb *NEW*

~ARROW_CURSOR~
0-1 Image to use for arrow mouse pointer*NEW*

~CROSSHAIR_CURSOR~
0-1 Image to use for crosshair mouse pointer*NEW*

~CURSOR_PALETTE~
0-1 Colours for mouse pointer*NEW*

~INV_LAYOUT~
0-1 position and size of inventory list *NEW*

~INV_UP~
0-1 properties of inventory scroll arrow *NEW*

~INV_DOWN~
0-1 properties of inventory scroll arrow *NEW*

~CUTSCENE_LAYOUT~
0-1 position and size of inventory list *NEW*

~DLG_LAYOUT~
0-1 position and size of dialogue lines *NEW*

~DLG_UP~
0-1 properties of dialogue scroll arrow *NEW*

~DLG_DOWN~
0-1 properties of dialogue scroll arrow *NEW*

~SENTENCE_LAYOUT~
0-1 position and size of sentence display *NEW*

~TIME_FORMAT~
0-1 format of time display *NEW*

~TIME_LAYOUT~
0-1 layout of time display *NEW*

~DATE_FORMAT~
0-1 format of date display *NEW*

~DATE_LAYOUT~
0-1 layout of date display *NEW*

002e4fd0-0 60 / 123

~MONTH_TEXT~
0-1 change names of all months *NEW*

~DAY_TEXT~
0-1 change names of all the days of the week *NEW*

~SYSTEM_TEXT~
any change system message texts *NEW*

~WALK_BUTTON~
one Left or right button used for walking?

~DISABLE_QUIT~
0-1 Disables the "q" quit key

~EXIT_COL~
one Text color of exit names

~OBJ_COL~
one Text color of object names

~START_ROOM~
one Adventure starting position

~MAX_ROOM~
one Maximum room number used

~MAX_SECTION~
one Maximum section number used

~N_DIALOGUES~
0-1 Sets the limits for dialogues

~MAX_DACT~
one Maximum number of DACT statements per room

~MSGFONT~
one Scene area text font and size

~COMFONT~
one Command and dialogue area text font and size

~TITLEFONT1~
one Titlepage text font and size (1)

~TITLEFONT2~
one Titlepage text font and size (2)

~LINE_LENGTH~
one Line length for SAY, RESP, etc.

002e4fd0-0 61 / 123

~NORMAL_WAIT~
0-1 Normal wait period for texts *NEW*

~MODE_SWITCH~
0-1 Command/dialogue switching style *NEW*

~AREA_SIZES~
0-1 Heights of scene and command areas *NEW*

~COMMAND_AREA~
one Name of picture with command area graphics

~DLG_AREA~
one Name of picture with dialogue area graphics

~RESOURCE~
one Name of interface resource bank

~GLOBALOBJS~
one Number of global objects

~SECTIONOBJS~
one Number of section objects

~ROOMOBJS~
one Number of room objects

~GLOBALBOBS~
one Number of global BOB images

~SECTIONBOBS~
one Number of section BOB images

~ROOMBOBS~
one Number of room BOB images

~CLPART~
any Name of picture containing clipart graphics

~BOBS~
any Grab global BOB images from clipart picture

~CHARACTER_HEIGHT~
one "Average" or estimated height of main character

~CHARACTER_WIDTH~
one "Average" or estimated width of main character

~CHARACTER_BOB~
one BOB number used for main character

~CHARACTER_COL~

002e4fd0-0 62 / 123

one Text color of main character "speech"

~STILL_RIGHT~
one Main character right profile image

~STILL_LEFT~
one Main character left profile image

~STILL_BACK~
one Main character backside image

~STILL_FRONT~
one Main character front image

~PAUSE_RIGHT~
one Main character pause image having walked right

~PAUSE_LEFT~
one Main character pause image having walked left

~PAUSE_BACK~
one Main character pause image having walked away

~PAUSE_FRONT~
one Main character pause image having walked toward

~WALK_RIGHT~
one Main character animation for walking right

~WALK_LEFT~
one Main character animation for walking left

~WALK_AWAY~
one Main character animation for walking away

~WALK_TOWARD~
one Main character animation for walking toward

~WALK_SPEED~
one Main character walking speed adjustment

~TALK_MAP~
1-8 Speech animations mapped to pause/still images

~HANDLE_MAP~
1-8 Object manipulation animations mapped to -"-

~OBJECT~
any Definitions of global objects

~DLG~
any Definitions of dialogue partners

002e4fd0-0 63 / 123

~ACTION~
any Actions taken for input relevant to entire game

1.99 .section files

n.section Statements =DEMO=>

Follow the statement order presented here in your .section files to avoid
any unnecessary trouble.

Statement Number Description

~CLPART~
any Name of picture file containing clipart

~SECTIONBOBS~
any Grab section BOB images from clipart picture

~SECTIONOBJ~
any Define section objects

~LINE~
any Define dialogue lines main character can choose

from *NEW*

~LACT~
any Define responses to dialogue lines *NEW*

~DACT~
any Actions executed directly when the section file is

first used.

~ACTION~
any Actions taken for player input relevant to section

1.100 .room files

n.room Statements =DEMO=>

Please follow the order indicated here in your .room files to avoid
unnecessary errors and trouble.

Statement Number Description

002e4fd0-0 64 / 123

~UPDATE~
one Frame update rate *NEW*

~SECTION~
one Section to which room belongs

~BG_IFF~
one Name of background picture for room

~START_POS~
any Starting positions for main character

~FLOOR~
1-12 Areas where the main character can "put its feet"

~PATH~
0-12 Path used for navigating between floors

~EXIT~
1-10 Exits

~CLPART~
any Name of picture file containing clipart

~ROOMBOBS~
any Grab room BOB images from clipart picture

~STATIC~
any Place static graphic elements on background picture

~ANIM~
any Place animated graphic elements on background ←↩

picture

~ROOMOBJ~
any Define room objects

~DACT~
any Actions to be taken directly upon entering the room

~LINE~
any Define dialogue lines main character can choose from

~LACT~
any Define responses to dialogue alternatives

~ACTION~

002e4fd0-0 65 / 123

any Actions to take for player input relevant to room

1.101 NAME

NAME Statement (main)

Gives the adventure name

NAME: adventure name

It’s always nice to know what you are doing, isn’t it? This is shown when
the player presses "V" and also identifies saved game files.

1.102 VERSION

VERSION Statement (main)

Gives the adventure version

VERSION: version number

This is used to make sure saved game files are compatible with the current
status of your adventure - always update this when you do ANYTHING with the
adventure that affects the number of rooms, objects, sections, object
definitions, or any flag usage!

1.103 MAX_CACHE

MAX_CACHE Statement (main)

Sets the maximum number of files in the memory cache

MAX_CACHE: number of files

For normal use: Set to 0 when creating a game (especially if you are using
the on-line debugger to reload altered scripts).

Set to 100 once the game is ready to be played to eliminate disk swaps and
make use of any extra memory you may have.

When GRAAL detects that extra memory is available, it calculates how many
files it will be able to fit into RAM, thus reducing disk access during
gameplay. GRAAL calculates an average of 50K per file - if this is totally
wrong (and don’t ask me how, you will probably never have to bother), you
may have to set this to a very low number or even to zero.

002e4fd0-0 66 / 123

1.104 ARROW_CURSOR:

ARROW_CURSOR / CROSSHAIR_CURSOR Statements (main)

Changes the image of the mouse pointer

ARROW_CURSOR: image;hotspotx;hotspoty
CROSSHAIR_CURSOR: image;hotspotx;hotspoty

image

a normal image number - you must grab the image to be used using a BOBS:
statement first.

Note that the images to be used as mouse pointer shapes must be drawn i
lowres, and in four colours (2 bitplanes) only. Also, the image must be
exactly 16 pixels wide. (Actually, the BOBS: statement should read 17
pixels, which will actually pick up 16 - one of life’s little mysteries.)

hotspotx;hotspoty

This sets the "sensitive point" of the cursor image, counted in pixels from
the upper left corner of the image.

See also:
CURSOR_PALETTE
statement

1.105 CURSOR_PALETTE:

CURSOR_PALETTE Statement (main)

Sets the colours to use for the mouse pointer in the command area

CURSOR_PALETTE: rgb;rgb;rgb

The mouse pointer uses three colours. In the scene area, the colours will
always be colours 16, 17, and 18 in the backdrop picture’s palette.

The colours specified here are used in the scene and command area. Each
colour value is given as a a red, green, and blue component value in
hexadecimal.

FFF means white 000 means black 888 means grey 550 means dark yellow (some
red + some blue) 0FF means bright cyan (all green + all blue)

...and so on...

002e4fd0-0 67 / 123

1.106 INV_LAYOUT

INV_LAYOUT Statement (main)

Controls the layout of the inventory list

INV_LAYOUT: x1;y1;x2;y2;rows;cols;TEXT|ICONS;
VERTICAL|HORIZONTAL;ink/image_no;bg

The first four parameters determines the size and position of the box
containing the inventory list. "rows" and "columns" determines how many rows
and columsn there are.

TEXT|ICONS

determines whether text or icons will be used for the objects in the
inventory list

VERTICAL|HORIZONTAL

determines whether the list scrolls vertically (top to bottom) or
horizontally (left to right).

ink/image_no

If the inventory display is TEXT, this is the ink colour.

If the display is ICONS, this is the image number to be used for an "empty
space" in the inventory display. For example, if all your inventory icons
have a border, this image should be a border with nothing in it - it kind of
helps fill out the display...

When a text inventory is specified, it is assumed there may be a border (1
pixel high, 2 pixels wide) around each "cell" in the inventory display: This
means GRAAL does not erase the edges of the "cell".

bg

specifies the colour to use for the background colour.

If no INV_LAYOUT statement is given, the following is assumed:

INV_LAYOUT: 284;19;634;60;3;2;TEXT;VERTICAL;7;8

which corresponds to the GRAAL built-in command area (the one used if
COMMAND_AREA: DEFAULT is specified).

1.107 INV_UP

002e4fd0-0 68 / 123

INV_UP / INV_DOWN / DLG_UP / DLG_DOWN Statements (main)

Sets the properties of the arrows used to scroll the inventory and the
dialogue lines

INV_UP: x;y;image1;image2
INV_DOWN: x;y;image1;image2
DLG_UP: x;y;image1;image2
DLG_DOWN: x;y;image1;image2

x;y

is the top left hand corner of the aroow of other symbol used to indicate
the list can be scrolled (up or down, depending on which statement we’re
talking about)

image1

is the image used when the function is available

image2

is the image used when the function is unavailable

The images must be global. The default statements are as follows:

INV_UP: 265;18;12;10;3;5
INV_DOWN: 265;48;12;10;4;5

DLG_UP: 8;8;12;10;3;5
DLG_DOWN: 8;38;12;10;4;5

As you see, by default the inventory and dialogue displays use the same
symbols (up and down arrows), and all statements use the same image2. This
is possible because the "not available" symbol is just a piece of
background, erasing the unavailable arrow(s) completely.

1.108 DLG_LAYOUT

DLG_LAYOUT Statement (main)

Determines the layout of the dialogue area

DLG_LAYOUT: x1;y1;x2;y2;rows;ink;bg

x1;y1;x2;y2

defines the "box" containing the dialogue lines.

rows

002e4fd0-0 69 / 123

determines the numer of lines shown at the same time. The height of the box
is divided into this many "cells"

ink;bg

sets the text and background colours

When handling the dialogue lines, GRAAL assumes there may be a border 1 pxel
high and 2 pixels wide around each "cell" in the list, and therefore does
not erase the edges of the cell.

1.109 CUTSCENE_LAYOUT

CUTSCENE_LAYOUT Statement (main)

Determines size, position and image for cutscene indicator

CUTSCENE: x1;y1;x2;y2;bg;imagex;imagey;imageno

This is used by the cutscene command (with the "S" or "F" parameter) to
place the cutscene indicator on the command area.

x1;y1;x2;y2;bg

defines the area in the command area which should be "blanked out" before
placing the indicator itself, an its colour. (A larger area "eats" some
memory, because the overlaid graphics have to be stored elsewhere for the
duration...

bg

is the background colour

imagex;imagey

is the top left corner of the indicator

imageno

is the bob image containing the actual indicator.

If this statement is not in the graal.main file, the following is used:

CUTSCENE: 5;18;255;62;8;122;24;6

002e4fd0-0 70 / 123

1.110 SENTENCE_LAYOUT

SENTENCE_LAYOUT Statement (main)

Determines the size and position of the sentence display area

SENTENCE_LAYOUT: x1;y1;x2;y2;ink;inkhi;bg

This statement sets the box where the constructed sentence is built and
displayed.

x1;y1;x2;y2

are the corners of the area of the sentence box.

It is assumed a border is included in the area (1 pixel high, 2 pixels
wide), which means the edges of the specified area will not be erased by
GRAAL. The text will be centered at the top of the area.

ink;inkhi;bg

sets the text, highlighted text, and background colours.

1.111 TIME_FORMAT

TIME_FORMAT Statement (main)

Determines how the time is shown

TIME_FORMAT: format-string;am-text;pm-text

The time can be shown either permanently in the command area (using

TIME_LAYOUT
), or in a text in the scene area (using the special variable

#TIME in a TEXT, SAY, THINK, or RESP command).

This statement determines how it is shown (excluding the ANALOGUE display
possible with TIME_LAYOUT - see that for more info.)

format-string

This is a string of characters. The following special characters may
appear:

#12

the hours will be placed here in 12-hour format

002e4fd0-0 71 / 123

#24

the hours will be placed here in 24-hour format

#MM

the minutes will be placed here

#AM

the am/pm text will be placed here

Examples:

TIME_FORMAT: #12:#MM #AM;am;pm

may give results such as "3:35 am" and "6:00 pm"

TIME_FORMAT: #24:#MM

may give results such as "1:30" or "15:37"

1.112 TIME_LAYOUT

TIME_LAYOUT Statement (main)

tells GRAAL to show the time in the command area

TIME_LAYOUT:
DIGITAL|ANALOGUE;x1;y1;x2;y2;ink;bg[[;px1;py1;px2;py2;ink;bg];font]

If this statement is present in the graal.main script, the time will be
permanently shown in the command area. It will be automatically updated when
needed.

DIGITAL|ANALOGUE

"DIGITAL" will show the time in figures and text using the format
specified in

TIME_FORMAT
"ANALOGUE" will draw the hands of an analogue clock

x1;y1;x2;y2

This is the area where either the text or the clock hands are drawn. If
ANALOGUE is chosen, the width of the rectangle should be double the height
to achieve a circular clock face.

In DIGITAL mode, the text will be centered at the top of the rectangle.

002e4fd0-0 72 / 123

In ANALOGUE mode, the area is NOT erased when the hands are redrawn - only
the old positions of the hands are erased. This means you can draw the rest
of the clock face around the hands in the command area backdrop picture -
just make sure the hands do not pass over any of your graphics.

ink;bg

sets colour and background for the "digital text" or the clock face.

px1;py1;px2;py2

This can only be used together with analogue and defines a second rectangle
in the command area where the "am/pm" texts are shown to complement the
information in the analogue clock. If you do not want to display this
information, just leave the last 7 parameters out. (That is, the last "font"
parameter is also left out, because you do not need to specify a font for
the display of the clock face...)

ink;bg

sets the text and background colours for the "am/pm" text display for an
analogue clock (if this is included)..

font

This is the font used for the "DIGITAL" time display, or the "am/pm" display
complementing the "ANALOGUE" clock. A number between 1 and 4 is expected:

1 is TITLEFONT1
2 is TITLEFONT2
3 is MSGFONT
4 is COMFONT

1.113 DATE_FORMAT

DATE_FORMAT Statement (main)

Sets the date display format

DATE_FORMAT: format-string

The date can be displayed either permanently in the command area (using the

DATE_LAYOUT
statement) or in the sentence area using the special variable

#DATE in a SAY, THINK, TEXT or RESP statement.

This statement determines how the date will be presented.

format-string

002e4fd0-0 73 / 123

In this string, the following special characters will be replaced by "date
data"

#Y

is replaced with the year

#M

is replaced by the number of the month without a leading zero

#0M

is replaced by the number of the month with a leading zero

#N

is replaced by the name of the month (is seldom used in the same string as
"M", obviously)

#D

is replaced by the date without a leading zero

#0D

is replaced by the date with a leading zero

#W

is replaced by the weekday

All other characters in the string is kept as is.

Examples:

DATE_FORMAT: #Y-#0M-#0D

may give "1996-08-01"

DATE_FORMAT: #M/#D/#Y

may give: "8/1/96" (two or four digits in the year simply depends on what
you set the year to - see SETDATE command)

DATE_FORMAT: #N #D, #Y

may give "August 1, 1996"

DATE_FORMAT: #W, #N #D

may give "Saturday, August 1"

002e4fd0-0 74 / 123

Note that the names of months and weekdays can be changed using the

MONTH_TEXT:
and

DAY_TEXT:
statements.

1.114 DATE_LAYOUT

DATE_LAYOUT Statement (main)

tells GRAAL to show the date in the command area

DATE_LAYOUT: x1;y1;x2;y2;ink;bg;font

If this statement is present in the graal.main script, the date will be
permanently shown in the command area. It will be automatically updated
when needed. The display format is decided by the

DATE_FORMAT
statement.

x1;y1;x2;y2

This is the rectangle containing the date. The text will be centered at the
top of the rectangle.

ink;bg

sets the text and background colours

font

is a number between 1 and 4:

1 is TITLEFONT1
2 is TITLEFONT2
3 is MSGFONT
4 is COMFONT

1.115 WALK_BUTTON

WALK_BUTTON Statement (main)

Sets the mouse button used for walking.

WALK_BUTTON: LEFT|RIGHT

002e4fd0-0 75 / 123

The setting determines if you can use the left or right mouse button to
command the main character to walk to any spot in the room (that is, click
anywhere that isn’t an object or an exit).

1.116 DISABLE_QUIT

DISABLE_QUIT Statement (main)

disables the standard "q" quit key and function.

DISABLE_QUIT:

This statement has no parameters. When found in the graal.main file, it
disables the use of the "q" quit key to quit the game. You shouldn’t do this
until you have implemented and tested your own quit function, which probably
uses a direct verb (see the VERB_TEXT: statement) and the QUIT command.

1.117 N_VERBS

N_VERBS Statement (main)

Sets the number of commands (verbs) used in the player interface

N_VERBS: number of verbs

The default number of verbs is 9, not counting verb 0 (go to), which is
always present but not shown to the player.

If you do use this statement, there must also be a VERB_ZONE: statement for
each and every verb (that is, the number of VERB_ZONE: statements must match
the number given here).

1.118 VERB_ZONE

VERB_ZONE Statement (main)

Sets the position and size of a command (=verb) "button".

VERB_ZONE: verb number;x1;y1;x2;y2

verb number

is the number of the verb this zone belongs to

x1;y1;x2;y2

defines a rectangle (top left and bottom right corner, as always when

002e4fd0-0 76 / 123

specifying areas this way).

if VERB_ZONE statements are to be used at all, or
N_VERBS
changed from the

default 9, one VERB_ZONE statement must be given for each verb.

1.119 VERB_TEXT

VERB_TEXT Statement (graal.main)

Contains the message shown when using a verb, and also whether a verb is a
direct verb or not.

VERB_TEXT: verb_no;[$]text

This is the text that appears in the sentence area when you use a command or
an exit. Texts 0-9 and 999 have default values in English, but all of them
can be translated into any language using this statement, and all of them
(except a few) can also be changed to a completely different verb.

If the text is prefixed with a dollar sign ($), the verb is treated as a
direct verb. A direct verb does not use objects - it is executed immediately
when the player clicks it. This can be useful for making special functions
available in the command area, such as speical forms of QUIT, or a RESTART
command - although the possibilities do no end there.

These are the default values:

0 - Go to (Meaning can not be changed)
1 - Give (Meaning can not be changed)
2 - Pick up
3 - Use (Meaning can not be changed)
4 - Open
5 - Talk to
6 - Push
7 - Close
8 - Look at
9 - Pull

999 - to (This is the preposition text for command 1, "Give")

And here’s why you cant change the meaning of 0,1, and 3:

0 - This is not a command shown in the command area, but rather what
happens when you click an exit in the scene area - thus, it must
always have the meaning "go to" (although you can translate THAT
into any language using this statement!)

1 - This command is always suffixed with the preposition " to ".
To alter the " to ", use VERB_TEXT: 999;newtext

002e4fd0-0 77 / 123

3 - This command makes use (no pun intended!) of the preposition
defined for an object, which is what makes it possible to make objects
interact with each other (or not).

Of course, some of the other commands are also hard to think of a better
replacement for - how are you going to engage in conversations without a
"Talk to" command, for instance? Or perhaps you are not planning to - that’s
also up to you!

1.120 MONTH_TEXT

MONTH_TEXT Statement (main)

sets the names of all the months

MONTH_TEXT: name1;name2; ... ;name12

This is the name of the month that can be used when displaying a date. The
default names are "January","February", ... , "December"

See also:
DATE_FORMAT
and

DATE_LAYOUT
statements

1.121 DAY_TEXT

DAY_TEXT Statement (main)

sets the names of the days in the week

DAY_TEXT: name1;name2; ... ;name7

These are the names that can be used when displaying a date. The default
names are "Monday","Tuesday", ... , "Sunday"

See also:
TIME_FORMAT
and

TIME_LAYOUT
statements

1.122 SYSTEM_TEXT

SYSTEM_TEXT: Statement (main)

changes a system message text

002e4fd0-0 78 / 123

SYSTEM_TEXT: number;"message"

This is of use for translators to foreign languages only (like my own, for
instance).

Try to keep the text about the same length as the English original. These
are the default texts (the quotes must be included in the statement):

1 "Please insert disk "
2 "Select a saved game slot"
3 "Saved game description"
4 "Load"
5 "Save"
6 "Back"
7 "OK"
8 "Cancel"
9 "Change"
10 " There are no saved games on this disk."
11 "Do you want to use this disk for saved games?"
12 "****** GAME PAUSED ******\Press any key to continue"
13 "You are playing"
14 "running under "
15 "Please insert save disk into DF0:"
16 "Please write-enable the disk!"
17 " Yes"
18 "Music & Sounds off"
19 "Music & Sounds on"
20 " Speech speed:"
21 "Slow Fast"

1.123 EXIT_COL

EXIT_COL Statement (main)

Specifies color of exit names shown in scene area

EXIT_COL: colour number

Make this a fairly bright colour - the text will be surrounded by a black
outline.

1.124 OBJ_COL

OBJ_COL Statement (main)

Specifies the colour of object names displayed in the scene area

OBJ_COL: colour number

002e4fd0-0 79 / 123

Make this a fairly bright colour - it will be surrounded by a black outline.

1.125 START_ROOM

START_ROOM Statement (main)

Specifies the starting position for the adventure

START_ROOM: room;entrance

The action will commence in this room and at this entrance - also see the
.room

START_POS
statement.

1.126 MAX_ROOM

MAX_ROOM Statement (main)

Highest room number used in this adventure

MAX_ROOM: number

All rooms in an adventure are numbered from 1 and upwards - try not to leave
"holes" in the room sequence, since each room number, used or not, takes up
valuable memory space! If the adventure is split up onto several disks,
there is no way for GRAAL to automatically know how many rooms there
actually is, so this statement must be updated continually as more rooms are
added to the game.

Tip: If you delete a sequence of rooms in the middle of the game, re-use
those vacant room numbers if you add more rooms later on - rather than
increasing the highest room number.

1.127 MAX_SECTION

MAX_SECTION Statement (main)

The highest section number used in the adventure

MAX_SECTION: number

Like MAX_ROOM, this must be manually updated with the highest section number
used so far during development. Always start with section 1 and continue
upwards without leaving "holes" in the numbering sequence if you can avoid
it.

002e4fd0-0 80 / 123

1.128 MAX_DACT

MAX_DACT Statement (main)

Sets the maximum number of DACT statements that can be used in a room file

MAX_DACT: number

Don’t know why I made this customisable, really - 50 should be plenty, and
no other limits of a similar nature are possible to alter thus far. Still,
in future versions of GRAAL, most limits like this may be defined by the
user.

1.129 N_DIALOGUES

N_DIALOGUES Statement (main)

Sets the limits for dialogues

N_DIALOGUES number;lines;actions

number

is the number of simultaneously available dialogues - that is, the maximum
number referred to at any time by the current section and the current room
scripts.

lines

is the maximum number of LINE: statements used in a dialogue

actions

is the maximum number of LACT: statements used in a dialogue

1.130 MSGFONT

MSGFONT COMFONT TITLEFONT1 TITLEFONT2 Statements (main)

Defines fonts and sizes for various uses

MSGFONT: name;size
COMFONT: name;size
TITLEFONT1: name;size
TITLEFONT2: name;size

The fonts (in the proper sizes) must be available in a FONTS: drawer in your
development directory. Furthermore, FIXFONTS must have been used on the

002e4fd0-0 81 / 123

drawer for all the fonts to be OK.

MSGFONT is the font used for all text displayed in the scene area.

COMFONT is the font used for the input sentence display and dialogue lines.

Do not alter these two in GRAAL version 1, since this will probably mess up
line spacing (among other things). They will be of more use in GRAAL 2.

TITLEFONT1 and TITLEFONT2 are used with the TYPE command to print text on
title screens.

Note: When GRAAL starts up, the GRAAL FONTS: drawer is copied to RAM:, and
FONTS: is reassigned to RAM:Fonts/. Which is a good reason for not multi-
tasking too much when running a GRAAL adventure. Sorry ’bout this, but the
fault lies with Amos Pro font handling (and the fact that the Easylife
extension font handling had too many bugs in it!).

1.131 LINE_LENGTH

LINE_LENGTH Statement (main)

Determines the line length of displayed sentences (SAY, RESP, and other
commands.)

LINE_LENGTH characters

GRAAL does automatic line breaks in long sentences - this is the length it
aims for for each line in SAY, RESP, and other similar commands. GRAAL will
only break lines in between words, and does not hyphenate.

You may control line breaks manually in any sentence - just insert backslash
(\) characters where you want line breaks to appear. This will override
the setting of the LINE_LENGTH: statement.

1.132 NORMAL_WAIT

NORMAL_WAIT Statement (main)

Sets the default display time for text and sentences in scene area

NORMAL_WAIT: time

This value is used in a formula calculating for how long a text or spoken
sentence should be displayed in the scene area. The formular also
incorporates the overall text length and the number of lines it is broken
into. Also, character sentences are shown for a slightly shorter period of
time than other characters speech, because the contents of a "SAY" sentence
uttered by the main character is often known wholly or partly by the player
beforehand.

002e4fd0-0 82 / 123

The bigger the number, the longer the pause. Default is 100. If this is not
enough, try other nice, round numbers like 200 or 400..

1.133 MODE_SWITCH

MODE_SWITCH Statement (main)

Decides how a switch between command and dialogue mode is performed.

MODE_SWITCH: ROLL|INSTANT

ROLL

The command area rolls off the bottom of the screen, and the dialogue area
rolls in from where the command area disappeared. (And vice versa.)

This is the default, and what GRAAL 1 used.

INSTANT

The command area disappears instantly, and the dialogue area is created "on
the spot" to replace it. (And vice versa.)

1.134 SPLIT_LINE

AREA_SIZES: Statement (main)

Sets the height of the scene area and the command area.

AREA_SIZES: scene_height;command_height

This statement allows you to vary the proportions of the screen set aside to
the scene area versus and command/dialogue area.

NOTE: If you want NTSC machine users to be able to run your adventures, you
should make sure the sum of the values is not higher than 200. "Pal-only"
adventures should not use a sum bigger then 256.

1.135 COMMAND_AREA

COMMAND_AREA / DLG_AREA Statements (main)

Graphic files containing the graphics for the command area and dialogue
area

002e4fd0-0 83 / 123

COMMAND_AREA filename
DLG_AREA filename

These files contain the graphics for the command area and its replacement
during dialogues, the dialogue control area. In graal 1, keep all
measurements and positions of all boxes and buttons drawn in these files
exactly as they are: GRAAL 2 will provide more freedom when designing the
user interface, but for now you are stuck with the nine standard commands
and the fonts and spacings used in Olaf 1.

If DEFAULT is specified as filename, a new file will not be loaded - the
default graphics present in GRAALs memory will be used instead, which speeds
up the loading time.

1.136 RESOURCE

RESOURCE Statement (main)

Name of interface resource bank

RESOURCE filename

This must be an Amos Pro resource bank especially designed for GRAAL. It
controls the graphic appearance of the disk swapping, save/load and quit
dialogue boxes, among other things. Experienced Amos Pro users can also
easily use the Amos resource editor to make their own banks, but this will
not be explained here.

GRAAL 2 will provide several different ready-made resource banks with
different looks: High-tech, Stone-age, Medeival... For now, stick with the
one used in Olaf 1.

1.137 GLOBALOBJS

GLOBALOBJS / SECTIONOBJS / ROOMOBJS Statements (main)

Sets the number of objects that can be used in the game

GLOBALOBJS: number
SECTIONOBJS: number
ROOMOBJS: number

Objects are all the objects that have a name within the adventure and thus
can be manipulated by the user.

It would be wasteful to have the data for all objects in memory all the
time, which is why they are divided into three categories:

GLOBAL OBJECTS are indeed available all the time. Everything that can be
carried in the inventory over more than one section of the game, and all

002e4fd0-0 84 / 123

characters that Olaf can have conversations with must be in this category.
Numbering of global objects start with 1 and proceeds upwards.

SECTION OBJECTS can only exist within one particular section of the game.
Note that if a player leaves the section and re-enters it at a later date,
all information in object flags and the like has been lost - all object will
be re-initialised with the status and position defined in the OBJECT:
stetements in the .section file. Therefore, use this with caution! To refer
to a section object, use SOBJn, where n is the number of the section
object.

ROOM OBJECTS are restricted to the current room only, and should
preferrably be objects which can not be "seriously" manipulated by the user
- usually, they are only there to add a bit of atmosphere and to act as red
herrings. The torch in the bar in Olaf 1 is a perfect example of such an
object. To refer to a room object, use ROBJn, where n is the number of the
room object.

These statements decide how many objects of each time GRAAL will make room
for. You can alter any of the values any time during the development, so no
panic.

1.138 GLOBALBOBS

GLOBALBOBS / SECTIONBOBS / ROOMBOBS Statements (main)

Sets the number of BOB image bank slots available for each BOB image
category

N_GLOBALBOBS: number
N_SECTIONBOBS: number
N_ROOMBOBS: number

Object images are referred to and treated according to which of the three
above categories they belong:

GLOBAL BOBS are images that are always in memory for instant access anywhere
in the game - for instance, the images used for the animation of the main
character. Global BOB images are grabbed by the BOBS: statement in the
graal.main file and referred to by their true number. Since BOB images 1-10
are reserved for system use, the ones you normally refer to in the game
start with number 11.

SECTION BOBS are grabbed with the SECTIONBOBS: statement in a .section file
and remain in memory as long as the player stays in the section. They are
referred to using SBOBn, where n is the number of the section BOB image.

ROOM BOBS are grabbed with the ROOMBOBS: statement in a .room file and
remain in memory as long as the player stays in the room. They are referred
to using RBOBn, where n is the number of the room BOB image.

The numbers set in these statements may be altered at any time during
development, so don’t panic.

002e4fd0-0 85 / 123

Note: If you need some "dynamic" image replacing, any kind of image may also
be grabbed/replaced by the

BOBS
command, which has the same parameter as

these statements.

1.139 CLPART

CLPART Statement (main, section, room)

Loads an IFF picture file containing clipart into memory

CLPART: filename

GRAAL doesn’t mess around with complicated picture storage formats - all
graphics used in the game are "grabbed" from ordinary IFF files. This
statement selects the IFF file to be using for subsequent "grabbing" with
the BOBS:, SECTIONBOBS: and ROOMBOBS: statements.

1.140 BOBS

BOBS Statement (main)

SECTIONBOBS Statement (section)

ROOMBOBS Statement (room)

Grabs BOB images into the BOB image bank

BOBS: number;startnumber;x1;y1;width;height;x-offset;hotspot
SECTIONBOBS: number;startnumber;x1;y1;width;height;x-offset;hotspot
ROOMBOBS: number;startnumber;x1;y1;width;height;x-offset;hotspot

This command can grab a single image or a row of images, provided they are
aligned horisontally and equally sized and spaced. All three versions of the
command have the same syntax. The only difference is the BOB image category
they grab. BOBS are later referred to by their proper image number,
SECTIONBOBS by SOBJn and ROOMBOBS by ROBJn.

number

The number of images to grab with this statement.

startnumber

The first image to grab will get this number. If more than one image is
grabbed, the number will be assigned in increasing sequence. E.g. BOBS:
4;11;... would grab the global BOB images 11, 12, 13 and 14. ROOMBOBS
1;5;... would grab ROBJ5.

002e4fd0-0 86 / 123

x1;y1

Imagine the clipart being cut out of the picture (previously loaded with the
CLPART: statement) by placing a rectangular frame over the picture and
cutting along the edges, x1;y1 is the co-ordinate in the upper left corner
of the frame...

width;height

...and this is the width and the height of the frame. Everything that is cut
out and is of colour 0 will be transparent when the image is used.

x-offset

If more than one image is grabbed with the statement, this number tells how
many pixels to the right the "frame" should be moved before cutting out the
next image.

hotspot

The hotspot decides which point of an image is actually placed at the
co-ordinates of a command using the image. For example,

BOBON 10,30,70,SBOB3

is a GRAAL command placing image SBOB3 at the co-ordinates 30,70. Great, but
which point of the image is actually placed at 30,70? That is decided by the
hotspot. The default hotspot in graal (choosen by setting the hotspot
parameter to 0) is in the middle at the bottom of the frame - which is where
a character grabbed as an image usually should have its feet. Setting the
hotspot parameter to another value retains the x-position of the hotspot but
alters the y-value. This has to do with getting objects in 3D scenes in the
correct order and is explained in more detail in the GRAAL tutorial.

1.141 CHARACTER_HEIGHT

CHARACTER_HEIGHT / CHARACTER_WIDTH Statements (main)

Gives the average size of the main character

CHARACTER_HEIGHT: pixels
CHARACTER_WIDTH: pixels

This states how big you main character normally is, and is used to calculate
how the main character may move on the screen. A good example is the "alley"
in the street outside the bar in Olaf 1. It shows that the system is aware
of Olafs width and doesn’t put him in the alley unless he fits there - click
on a point too close to the walls, and Olaf walks out of the alley again.

1.142 CHARACTER_BOB

002e4fd0-0 87 / 123

CHARACTER_BOB Statement (main)

Sets the BOB number used for the main character

CHARACTER_BOB: number

Do not alter this! (But some time in the future there may be a good reason
to be able to customise it.)

1.143 CHARACTER_COL

CHARACTER_COL Statement (main)

Sets the colour to use for main character "speech"

CHARACTER_COL: colour number

Make this a fairly bright colour, since it will be surrounded by a black
outline. It should also a colour that is the same for all graphics in the
adventure, because it does not look good if the main characters speech keeps
shifting its colour from dialogue to dialogue.

1.144 PAUSE_RIGHT

PAUSE_RIGHT / PAUSE_LEFT / PAUSE_BACK / PAUSE_FRONT Statements (main)

Sets the images used when the character pauses in one of the four main
directions

PAUSE_RIGHT: image number
PAUSE_LEFT: image number
PAUSE_BACK: image number
PAUSE_FRONT: image number

These images are used when the main character pauses waiting for player
input. You may choose to use exactly the same images as for the
corresponding STILL_ statements.

1.145 STILL_RIGHT

STILL_RIGHT / STILL_LEFT / STILL_BACK / STILL_FRONT Statements (main)

Sets the still images used for the main character and the four main
directions.

002e4fd0-0 88 / 123

STILL_RIGHT: image number
STILL_LEFT: image number
STILL_BACK: image number
STILL_FRONT: image number

These images will be used in automatic main character movement.

1.146 WALK_RIGHT

WALK_RIGHT / WALK_LEFT / WALK_AWAY / WALK_TOWARD Statements (main)

Defines the animation sequence used for movement in the four directions.

WALK_RIGHT: animation sequence
WALK_LEFT: animation sequence
WALK_AWAY: animation sequence
WALK_TOWARD: animation sequence

These four
animation~sequences
are used by GRAAL for all automatic movement

of the main character.

1.147 WALK_SPEED

WALK_SPEED Statement (main)

Adjust walking speed

WALK_SPEED: speed factor

This statement adjusts the speed of the automatic main character movement so
that the speed matches the WALK_xxxxx animation squences - the objective is
to make it look like the character actually uses his feet to walk, rather
than glide around on a slippery surface. Simply experiment with the value
until the movement (especially sideways) looks good!

1.148 TALK_MAP

TALK_MAP Statement (main)

Defines animation sequences used for automatic main character speech" link
"GG_Animation" 0} used for automatic main character speech

TALK_MAP: previous image;animation sequence

When a

002e4fd0-0 89 / 123

SAY
command is given, GRAAL checks which image is currently used for

the main character. (This should normally be one of the
STILL_...
or

PAUSE_...
images.) The image is checked against the TALK_MAP statements

(there may be up to 8 of them) and the one where the previous image matches
the main character’s current image is used for the animation of the speech.

1.149 HANDLE_MAP

HANDLE_MAP Statement (main)

Defines the animation~sequences used when main character manipulates
objects" link "GG_Animation" 0} used when main character manipulates
objects

HANDLE_MAP: previous image;anim seq low;anim seq mid;anim seq high

When a HANDLE command is encountered, GRAAL checks which image is currently
being used for the main character, and the "handle position" for the object
being manipulated. The proper animation sequence foom the HANDLE_MAP
statement matching the current main character image is then used. Note that
the animation sequences only show the main character reaching out for
something, and that the last image in each sequence should be specified as
lasting for only one frame.

1.150 OBJECT

OBJECT Statement (main)

SECTIONOBJ Statement (section)

ROOMOBJ Statement (room)

Defines an object

OBJECT: number;name;start location;VIS|NVIS;default image;bob;
x pos;y pos;character x offset;character y offset;
character still image;preposition;pickable;animation channel;
default command;icon image;handle position;types;
word 1;word 2;word 3

SECTIONOBJ: ...ditto...

ROOMOBJ: ...ditto... same syntax for all three...

Note that all parameters should be on the same line in the GRAAL file - a

002e4fd0-0 90 / 123

bit difficult to show in ordinary guide format here, though. Anyway, you
really should use GRAALs own object editor to be able to edit the parameters
in a more user-friendly format. (See the editor documentation for this
one.)

Yes, this is the most complex statement there is, but let’s run through it
one parameter at a time:

number

For global objects specified by the OBJECT statement, the object is later
referred to by this very number.

Objects defined by SECTIONOBJ will be referred to as ROBJn, where n is the
number.

Objects defined by ROOMOBJ will be referred to as ROBJn, where n is the
number.

name

The object name shown when the cursor hits the object, and in the inventory.
A backslash in the name will cause a line break in that position when it is
displayed in the scene area. The

NAME
command can alter this at any time.

start location

The room number where the object is initially positioned. 0 is used for
objects that are "nowhere".

VIS|NVIS

VIS if the object is visible, NVIS if it is hidden.
SHOW
and

HIDE
commands

can alter this as you wish later on.

default image

image number, animation string or pattern definition initially used for the
object

bob

the bob number to use for this object. two objects (including characters and
static and animated objects) cannot use the same bob number at the same
time.

x pos;y pos

The object’s position on the screen.

character x offset;character y offset

002e4fd0-0 91 / 123

The main character’s position relative to the object when manipulating it,
looking at it, or plain walking up to it (with the

MOBJ
command).

character still image

The image used for the main character after having walked up to the object.

preposition

A preposition indicates that the object can not be used on its own, but must
be combined with a second object.

PICK|NPICK

PICK means the object can be picked up and added to the inventory. (NPICK
for churches, planet systems and other things hard to carry around.)

animation channel

The animation channel used for the object. (Only if the object is animated,
of course.) Make sure two animated objects in the same room don’t try to use
the same channel!

default command

This is the command directly executed if the player points to an object in
the scene area and clicks the right mouse button

icon image

If the inventory is displayed as icons, this is the image number used for
the inventory display. Can be a global, room or section bob image -
naturally, the image must be available at all times when there is a chance
of the oject being in the inventory!

handle position

Decides whether the object is manipulated using the LOW, MID or HIGH
animation (

HANDLE
command).

types

A character string, where each character specifies some property for the
object. The following are suggested, but using

IFTYPE
, you can use this

feature for almost anything you like!

M = Male character
F = Female character
A = Animal
G = Group

002e4fd0-0 92 / 123

V = Alive
D = Dead
C = Container
W = Wood
T = Metal
S = Stone
L = Liquid
E = Food ... and so on ...

word 1;word 2;word 3

When you construct sentences referring to an object, sometimes you would
like to use the proper article or other word connected to the object. These
parameters give you a chance to specify such words, which can the be put
into your

sentences
. These can also be altered with the
NAME
command during

the game.

1.151 DLG

DLG Statement (main)

Defines the dialogue partners.

DLG: number;object;speech colour;speech offset;speech animation sequence

For each dialogue that occurs in the game, a DLG statement must be present.

number

Dialogue number. Must be unique. Should start from 1 and proceed upwards
with as few gaps in the numbering sequence as possible - just like in room
and section numbering, any unused numbers take up memory space!

object

The dialogue "partner" is defined by this object. All such partners must be
global objects defined in the graal.main file.

speech colour

The colour used for the partner’s speech

speech offset

This number determines where the partner’s speech is printed. lower
numbers=higher above the partner’s head.

speech animation sequence

The animation sequence used with the

002e4fd0-0 93 / 123

RESP
command

1.152 ACTION

ACTION Statement (main, section, room)

Contains conditions and commands checked when player inputs a sentence.

ACTION: verb;condition|statement;...;condition|statement

When the player inputs a sentence, the ACTION: statements are checked for
the currently used script files, in this order:

room file, top to bottom
section file, top to bottom
graal.main file, top to bottom

When an ACTION statement with the proper verb number is found, its
parameters - the conditions and commands - are checked and executed from
left to right. As soon as a condition is FALSE, the rest of that ACTION
statement is skipped, and GRAAL looks at the next one. (There is a special
verb number, -1, for "timer events" - see the

DOAFTER
command.)

The search for further ACTION statements is stopped as soon as a valid
EXIT
command has been found. If a
REDO
statement is encountered, the process is

restarted from the first ACTION statement in the file currently being
processed.

1.153 DACT

DACT Statement (section, room)

Immediate actions upon entering section / room

DACT: condition|command;...;condition|command

Immediately after a room script has been loaded, all DACT statements in the
script are scanned for commands that should be executed before control is
returned to the player. As soon as an EXIT command is found, any remaining
DACT:s in the script are ignored.

DACT:s in sections are executed immediately before the room DACT:s for every
room belonging to that section. Note that an EXIT command in a section DACT
only skips the rest of the section DACT:s - then the execution of the room

002e4fd0-0 94 / 123

DACT:s begins.

The structure and function of DACT statements are the same as for
ACTION:
statements, except there is no verb number as first parameter here ←↩

.

1.154 UPDATE

UPDATE Statement (room)

Set screen update rate

UPDATE: scroll_rate[;normal_rate]

When there is a lot of graphics being updated simultaneously, the
animation(s) may become jerky. This is because all elements can’t be updated
within 1/50th of a second - the time gap available before GRAAL normally
refreshes the screen. The problem is most noticeable during background
scrolls, because of the added amount of graphics moving about.

To make the animations smoother, we sometimes need to slow down the updating
rate and update the screen perhaps every 2/50ths or 3/50ths, allowing GRAAL
more time to do its graphics work. The UPDATE: statement allows you to set
specific rates for each room, optimising the performance, and also to
provide different values depending on whether the background is currently
scrolling or not.

Default values are 6 for background scrolling and 1 for "normal" displays.

1.155 SECTION

SECTION Statement (room)

Defines to which section this room belongs

SECTION: n

When you enter a new room and the section number is not the same as the one
for the previous room, the approprita section file (n.section) is loaded and
its contents executed.

1.156 BG_IFF

BG_IFF Statement (room)

Name of background graphics file

002e4fd0-0 95 / 123

BG_IFF: filename

This statement loads the gackground graphics for the room. The backdrop
should be 120 pixels high, and at least 320 pixels wide.

1.157 START_POS

START_POS Statement (room)

Sets possible starting positions

START_POS: number;image;x;y;L|R|M;floor

number

Number of entrance for this room, should range from 1 and upwards.

image

The image used for the main character when placed in the starting position.

x;y

Position of the main character

L|R|M

Decides whether the Left, Right, or Middle of the backdrop is initially
shown.

floor

A floor containing the x;y point. If this is not properly set, the main
character may do a strange walkabout the frist time he is commanded to move
somewhere else...

1.158 FLOOR

FLOOR Statement (room)

Defines the "path" where the main character can walk and how they are
connected

FLOOR: number;x1;y1;x2;y2;floormap/.../floormap

Each floor defines a rectangular area where the main character can "place
its feet". Up to 12 such rectangles can be defined in a room, and they
should be connected in such a way that no floor becomes an "island" without
sharing any space with any other floor. In fact, floors shoull overlap as

002e4fd0-0 96 / 123

much as possible in order for the character to be able to move about.

OVERLAPPING OF FLOORS

There are some vital rules for floor overlapping. Two floors may have one or
two intersection points, but not four. In the following diagrams, X marks
the intersection points:

+------+ +--------+ +--------+
| 1 | | 1 | | 1 |
| | | | | |
+------X----------+ +-----X--------X--+ +--------X----+ |
| | | | | | | | | | |
| | 2 | | 2 | | | | 2 +----X---+
| | | | | | | | |
+------+----------+ +-----+--------+--+ +-------------+

are all OK, but the following is ILLEGAL:

+------+
| 1 |

+----X------X-----+
| 2 | | |
+----X------X-----+

| |
+------+

WALKING AROUND

The floormap parameters decide which floors the main character uses to move
from one spot to another.

For each floor defined, there must be as many floormaps defined as there are
floors in the room. Each floormap has the following format:

finishfloor-nextfloor

and answers the question: "If my final destination is finishfloor, which
floor should I go to from where I currently am?"

Example: For floor 2, there is a floormap

3-4

This floormap says that to go to floor 3 from floor 2, you should go via
floor 4.

Through logic follows that for each floor defined, there is always a
floormap for that floor pointing to itself. For example, one of the
floormaps for floor one is always

1-1

because, if you want to get to floor 1, and you already are there, you
should not go anywhere else to get there. That’s logic!

If there is more than one floormap, they are separated by a slash (/).

002e4fd0-0 97 / 123

PATHS

From GRAAL 2, there is a way of navigating between floors that do not
require the floors to overlap: A path can be defined between them using the

PATH:
statement. Paths can also twist and turn a number of times, which ←↩

may
come in handy in its own right.

To use a path in a floormap, prefix the (path) number with a "P". Click
PATH: above for a more complete description.

1.159 PATH

PATH Statement (room)

defines a path to walk between two floors

PATH: path number;firstfloor;secondfloor;x1;y1;x2;y2[{;xn;yn;}]

firstfloor

The number of the floor containing the first co-ordinate of the path.

secondfloor

The number of the floor containing the last co-ordinate of the path.

x1;y1;...

Co-ordinates specifying points along the path.

This is an alternative way to move between two floors. If two floors do not
overlap, a path can be defined between them:

+--------------+
| |
| D |
|/ |

Path 1 / |
B-------------C |
/ | |

Floor 1 / +--------------+
+--------/---+ Floor 2
| / |
| A |
| |
+------------+

002e4fd0-0 98 / 123

As shown in the diagram, a path can alter direction a number of times. This
path has a starting point (A), two "knees" (B and C), and an ending point
(D). Up to six point may be defined. Two is the natural minimum.

Example:

PATH: 1;2;4;120;40;160;30;230;60

Path 1 goes between floors 2 and 4. The starting point is 120;40 (within
floor 2), it turns at 160;30 and ends at 230;60 (within floor 4).

These are the rules:

* A path must start inside one floor and end inside another.

* A when a path should be used, it is specified in a floormap
(se the FLOOR: statement) prefixed by a "P". For example,
the floormap

3-P2

means "if the destination floor is 3, now use path 2"

* Paths cannot be changed by commands, and if the floor settings
are changed by the SETFLOOR command, the starting and ending points
of all paths must still remain within the original floors. (Just
a longwinded way to say "avoid using paths in rooms where you
use SETFLOOR a lot...)

* When the player clicks a position on the screen, GRAAL tries to
calculate the closest point to which the character can walk. This
does NOT include points along the paths, but only the nearest
point within a floor. For example, is the player clicks point B in
the diagram above, the character will actually only move to the point
in floor 1 directly below and closest to it. If the player clicks
point C, GRAAL thinks "Aha, you want to go to floor 2, and moves
the character to the paths ending point (D), then to the point
within that floor that is closest to point C.

1.160 EXIT

EXIT Statement (room)

Defines an exit from the room

EXIT: exitno;x1;y1;x2;y2;ex;ey;description

Up to 10 exits may be defined in each room.

exitno

is from 1 to 10 and must be unique within the room.

x1;y1;x2;y2

002e4fd0-0 99 / 123

Defines an area which the player can click to exit. x1;y1 = upper left
corner, x2;y2 = lower right corner.

ex;ey

The co-ordinate the main character will walk to when exiting.

description

Name of exit displayed in the scene area when the cursor moves over it.

When the exit is clicked, GRAAL will execute any room ACTION statements that
begin

ACTION: 0;IFOBJ exitno;...

This should usually be followed by
MEXIT
and

GOTO
commands, if all you want

to do is a straightforward, uncomplicated switch to the next room. However,
you may do anything you like in these ACTION statements that you can do when
taking care of "normal" player input. Just remember, the

VERB
is 0, and

OBJ1
is the exit number.

1.161 STATIC

STATIC Statement (room)

Display a static image that is not an object

STATIC: bob number;image number;x;y

This statement is particularly useful to insert foreground objects into a
scene, which you never want to manipulate in any way.

As always, make sure the bob number used isn’t used for any other image
displayed in this room.

See also:
ANIM

1.162 ANIM

002e4fd0-0 100 / 123

ANIM Statement (room)

Display an animated image that is not an object

ANIM: bob number;image number;anim channel;
anim~sequence
;x;y

This statement is particularly useful for animated foreground images that
you do not wish to manipulate in any way in the game.

See also:
STATIC

1.163 LINE

LINE Statement (section, room)

Define a dialogue alternative

LINE: dialogue;line number;sentence;alternative;condition;...;condition

Each LINE statement defines a sentence to be shown in the dialogue control
area during a dialogue. It is the

DSET
command that decides which

alternatives actually appears at a certain time.

See the bottom of this text for special notes on use in .section files.

dialogue

Dialogue number (defined by the DSET statement in graal.main).

line number

A number from 1-30, must be unique within the dialogue

sentence

The sentence the main character will "speak" the first time this line is
used.

alternative

The sentence the main character will "speak" if the line has been used
before. This enables you to rephrase alternatives in a way that is more
natural than having to repeat the first-time line. For example, in the
sentence is

Who are you?

002e4fd0-0 101 / 123

and you would like to repeat that further on, the alternative should be
something like

Who did you say you are?

because repeating the first version would seem rather stupid.

condition;...;condition

There are two factors deciding whether a line appears in the dialogue
control area or not. The first one is that a DSET command must have given it
permission to appear. The second one is that all conditions specified here
must be fulfilled.

About section dialogues:

As of GRAAL 2, dialogues may be common to an entire section of the game.

Needless to say, this takes some care in the planning stage: Just keep in
mind that everywhere the dialogue can be invoked, the objects, characters
and room flags needed to carry out all possible LACT:s are in place. For
example, it is wise to make specific references to room flags (IFRF
room,flag=value) rather than test for "current room", because the room may
change from call to call.

At any time, the number of active dialogues loaded from the .room and
.section scripts must not exceed the number of dialogues set in the
N_DIALOGUES statement (default=6). For example, if there are two dialogues
in use by the section, no room belonging to that section must load more than
N_DIALOGUES-2 dialogues.

1.164 LACT

LACT Statement (section, room)

Contains actions in response to a certain dialogue alternative

LACT: dialogue;line;actions...

Important note: All LACT: statements for a certain dialogue line must be
placed immediately below that precise DLG: statement in the script file.

The
LINE:
statement description holds some information about using ←↩

dialogues
in section files.

dialogue

This is the number of the dialogue.

line

002e4fd0-0 102 / 123

This is the number of the line the player selected.

actions

These are any ordinary GRAAL conditions and commands.

LACT statements often end with a DSET;EXIT combination to refresh the
dialogue status, or an EDLG;EXIT combination to end the dialogue and return
to normal input mode.

See also:
LINE
and

DLG
statements, and

DSET
and

EDLG
commands.

1.165 Trouble-shooting

TROUBLE-SHOOTING

An ad-hoc creation like GRAAL is bound to have some niggles, many of which I
am probably not aware - because I invented the whole thing to suit my needs
and no-one else’s. However, there are some common mistakes easily made,
which will get you into trouble. Here’s how to deal with some of them:

My~command~/~statement~doesn’t~work~~~~~~~~~~~

My~iff~pictures~look~awful~/~crash~the~system~

GRAAL~ignores~my~rooms~~~~~~~~~~~~~~~~~~~~~~~~

>>Illegal~function~call>>~abort~~~~~~~~~~~~~~~

Mouse~cursor~does~not~register~visible~object~

My~exits~do~not~show~up~on~screen~~~~~~~~~~~~~

GRAAL~’looses’~the~exit~number~~~~~~~~~~~~~~~~
-

1.166 My command / statement doesn’t work

Trouble-shooting:

002e4fd0-0 103 / 123

MY COMMAND / STATEMENT DOESN’T WORK

You have probably got the number of parameters and / or delimiters wrong. In
most cases, GRAAL should detect this - in other cases, it doesn’t.

Check the syntax with the example files and this reference, and above all,
use the syntax checker in the GRAAL editor! Pay particular attention to the
delimiters used:

Be extra careful with those statements and commands where the last parameter
in itself may contain a number of other conditions or commands, like the
LINE and FLOOR statements.

1.167 My iff pictures look awful / crash the system

Trouble-shooting

MY GRAPHICS CAUSE TROUBLE

A lot of the trouble that may arise is caused by the graphics capabilities
of Amos Pro. Remember that only ECS graphics can be used, and not AGA
modes.

If you use DPAINT as a paint package, you MUST make sure that stencils and
fixed background modes are turned OFF before saving the graphics -
otherwise, horrible things will occur when Amos encounter that information
in the graphics file.

If you use a paint package with AGA capabilities, also remember that there
are more and subtler colour shades available: The colours in the picture,
and especially gradients, may look different when loaded into GRAAL. In
DPAINT IV (at least), there is a SCALE button in the palette requester that
scales all colours to "GRAAL-compatible" shades directly, so you may see
what the picture will actually look like.

Keeping the palette colours in order is pretty much up to you - just
remember,

* colour 0 is always transparent

* colour 1 should be white

* colour 2 should be black

1.168 GRAAL ignores my rooms

Trouble-shooting:

GRAAL IGNORES MY ROOMS

002e4fd0-0 104 / 123

No wonder - you have probably forgot to up the
MAX_ROOMS
statement parameter

in the graal.main file!

1.169 "

Trouble-shooting:

Illegal Function Calls

Whenever GRAAL stops dead and throws up one of these messages, it means you
have managed to do something my own error trapping in GRAAL hasn’t been able
to detect (or have run into a true bug in GRAAL itself). Some of these
errors will (hopefully) be trapped within GRAAL in coming releases. In the
meantime, these are some possible errors:

* You tried to
GOTO
or

EXIT
to a room that has no .room file.

* A
RESP
command pointed to a character that is actually not displayed on

screen - most likely, you got the dialogue number wrong in the command.
Alternatively, the

OBJECT
defining the character hasn’t been made

visible or was placed in the wrong room in the OBJECT statement.

* Check that all objects / graphics that you have ordered to be present
in the scene have actually been loaded into the BOB image bank first
using

CLPART
,
BOBS
,
ROOMBOBS
, etc. Also, accidentally grabbing an area

of a clipart file that consists only of the background colour as a BOB
image, and then trying to display that, may cause problems. I think.
Anyway, why should you?

* A text string longer than fits onto the screen, and without any spaces
or backslash (\) characters was encountered, rendering GRAAL unable
to perform automatic line breaks.

* You tried to use a room flag number higher than 20 or an object flag
number

002e4fd0-0 105 / 123

higher than 6.

1.170 Mouse cursor does not register visible object

Trouble-shooting

Although an object is visible on screen, the mouse cursor does not pick it
up.

This is due to the fact that if more than one object occupies the space
where the mouse cursor is, GRAAL only picks up the one that was first added
to the list of objects available in the room.

Use the
OBJONTOP
command to remedy the problem if and when it occurs.

1.171 My exits do not appear

Trouble-shooting

My exits do not show up on screen

1. You have not provided an exit name in the EXIT: statement. This means no
"Go to..." message is shown in the sentence box, and no name is shown above
the cursor in the scene area. However, this can also be put to good use,
because it allows you to use exits for defining any kind of clickable area
other than true exits and objects, for use as menu selections and what have
you.

2. An exit is not detected by GRAAL if it is covered by an object. The
remedy is often to make the graphics that are to be shown when the exit is
available the backdrop picture. A common example would be a door opening.
The only time the exit is available is when the door is open. Therefore, the
open doorway should be the backdrop picture, the closed door should be an
object or a BOB put over the doorway when the door is closed and the exit is
hidden.

(Completely hiding an exit with an object this way actually means you do not
have do issue the HIDE EXIT command. However, I think it is good coding
practice to include it just the same. The code makes a lot more sense that
way, showing clearly what is going on in the room.)

1.172 GRAAL

002e4fd0-0 106 / 123

Trouble-shooting

GRAAL looses the exit number

Before you are finished going thorugh the commands for an EXIT click
(ACTION: 0;IFOBJ....), the exit number seems to have changed or
disappeared.

Remember that the exit number is actually a special use of OBJ1, so any
commands put in these ACTION: statements that alter

OBJ1
must put the

original back before it is time to check the exit number next time!

1.173 Index

Index of database 002e4fd0-0

Documents

" link
" link

~CUTSCENE_LAYOUT~

.room files

.section files

A Very Short Introduction

About this Tutorial

ADDOF

ADDRF

ADDTIME

ARROW_CURSOR:

BOBOFF

BOBON

BOBS

CAMERA

CANCEL

CBOB

002e4fd0-0 107 / 123

CHAR

CLPART

CMOVE

COLOUR

CPOS

CURSOR_PALETTE:

CUTSCENE

DATE_FORMAT

DATE_LAYOUT

DAY_TEXT

DECOF

DECRF

DISABLE_QUIT

DLG_LAYOUT

DOAFTER

DSET

EDLG

EXIT

FADE

FINAL

FLOOR

GET

GOTO

graal.main file

HANDLE

HIDE

HIDEEXIT

HOTSP

ICON

002e4fd0-0 108 / 123

IFCARR / IFNOTCARR

IFCBOB

IFDATE

IFFLOOR

IFOBJ / IFOBJ2

IFOF

IFPICK

IFRF

IFROOM

IFSPOS

IFTIME

IFTYPE

IFWEEKDAY

INV_UP

LIGHTS

Limitations, Ranges, Reserved Numbers

LINE

LINE_LENGTH

Machine Requirements

MARK

MEXIT

MOBJ

MODE_SWITCH

MONTH_TEXT

NAME

NEWOBJ

News in version 2

NFLOOR

002e4fd0-0 109 / 123

NOBREAK

NORMAL_WAIT

N_DIALOGUES

N_VERBS

OBJ1 / OBJ2

OBJONTOP

OMOVE

PATH

PBOB

PICK

PREP

QUIT

REDO

REMOVE

RESP

RESTORETIME

RESUME

ROOM

SAMLOAD

SAMPLAY

SAVETIME

SAY

SENTENCE_LAYOUT

SETDATE

SETFLOOR

SETOF

SETRF

SETTIME

SHOW

002e4fd0-0 110 / 123

SHOWEXIT

SPLIT_LINE

Syntax Conventions

SYSTEM_TEXT

TEXT

The GRAAL player interface

The Structure of a GRAAL Game

THINK

TIME_FORMAT

TIME_LAYOUT

TITLE

TRACK

Trouble-shooting

TYPE

Variables in Text Strings

VERB

VERB_TEXT

VERB_ZONE

W(ait)

WALK_BUTTON

ACTION

ANIM

animation sequences

BG_IFF

BOBS

CHARACTER_BOB

CHARACTER_COL

CHARACTER_HEIGHT

002e4fd0-0 111 / 123

CLPART

COMMAND_AREA

DACT

DLG

EXIT

EXIT_COL

FLOOR

GLOBALBOBS

GLOBALOBJS

GRAAL

GRAAL Commands

GRAAL Conditions

GRAAL ignores my rooms

HANDLE_MAP

INV_LAYOUT

LACT

LINE

MAX_CACHE

MAX_DACT

MAX_ROOM

MAX_SECTION

Mouse cursor does not register visible object

MSGFONT

My command / statement doesn’t work

My exits do not appear

My iff pictures look awful / crash the system

NAME

OBJECT

OBJ_COL

002e4fd0-0 112 / 123

PAUSE_RIGHT

RESOURCE

SECTION

START_POS

START_ROOM

STATIC

STILL_RIGHT

TALK_MAP

UPDATE

VERSION

WALK_RIGHT

WALK_SPEED
Buttons

~A~Very~Short~Introduction~~~~~~~~~~~~~

~About~this~Reference~~~~~~~~~~~~~~~~~~

~ACTION~

~ADDOF~~~~~~~~~~

~ADDRF~~~~~~~~~~

~ADDTIME~~~~~~~~

~ANIM~

~AREA_SIZES~

~ARROW_CURSOR~

~BG_IFF~

~BOBOFF~~~~~~~~~

~BOBON~~~~~~~~~~

~BOBS~

~BOBS~~~~~~~~~~~

~CAMERA~~~~~~~~~

002e4fd0-0 113 / 123

~CANCEL~~~~~~~~~

~CBOB~~~~~~~~~~~

~CHAR~~~~~~~~~~~

~CHARACTER_BOB~

~CHARACTER_COL~

~CHARACTER_HEIGHT~

~CHARACTER_WIDTH~

~CLPART~

~CLPART~

~CLPART~~~~~~~~~

~CMOVE~~~~~~~~~~

~COLOUR~~~~~~~~~

~COMFONT~

~Commands~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~COMMAND_AREA~

~Conditions~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~CPOS~~~~~~~~~~~

~CROSSHAIR_CURSOR~

~CURSOR_PALETTE~

~CUTSCENE~~~~~~~

~CUTSCENE_LAYOUT~

~DACT~

~DATE_FORMAT~

~DATE_LAYOUT~

~DAY_TEXT~

~DECOF~~~~~~~~~~

~DECRF~~~~~~~~~~

~DISABLE_QUIT~

~DLG~

002e4fd0-0 114 / 123

~DLG_AREA~

~DLG_DOWN~

~DLG_LAYOUT~

~DLG_UP~

~DOAFTER~~~~~~~~

~DSET~~~~~~~~~~~

~EDLG~~~~~~~~~~~

~EXIT~

~EXIT~~~~~~~~~~~

~EXIT_COL~

~FADE~~~~~~~~~~~

~FINAL~~~~~~~~~~

~FLOOR~

~FLOOR~~~~~~~~~~

~GET~~~~~~~~~~~~

~GLOBALBOBS~

~GLOBALOBJS~

~GOTO~~~~~~~~~~~

~HANDLE~~~~~~~~~

~HANDLE_MAP~

~HIDE~~~~~~~~~~~

~HIDEEXIT~~~~~~~

~HOTSP~~~~~~~~~~

~ICON~~~~~~~~~~~

~IFCARR~/~IFNOTCARR~

~IFCBOB~~~~~~~~~~~~~

~IFDATE~~~~~~~~~~~~~

~IFFLOOR~~~~~~~~~~~~

002e4fd0-0 115 / 123

~IFOBJ~/~IFOBJ2~~~~~

~IFOF~/~IFOF2~~~~~~~

~IFPICK~~~~~~~~~~~~~

~IFRF~~~~~~~~~~~~~~~

~IFROOM~~~~~~~~~~~~~

~IFSPOS~~~~~~~~~~~~~

~IFTIME~~~~~~~~~~~~~

~IFTYPE~~~~~~~~~~~~~

~IFWEEKDAY~~~~~~~~~~

~INV_DOWN~

~INV_LAYOUT~

~INV_UP~

~LACT~

~LIGHTS~~~~~~~~~

~Limitations,~Ranges,~Reserved~Numbers~

~LINE~

~LINE~~~~~~~~~~~

~LINE_LENGTH~

~Machine~Requirements~~~~~~~~~~~~~~~~~~

~MARK~~~~~~~~~~~

~MAX_CACHE~

~MAX_DACT~

~MAX_ROOM~

~MAX_SECTION~

~MEXIT~~~~~~~~~~

~MOBJ~~~~~~~~~~~

~MODE_SWITCH~

~MONTH_TEXT~

~MSGFONT~

002e4fd0-0 116 / 123

~NAME~

~NAME~~~~~~~~~~~

~NEWOBJ~~~~~~~~~

~News~in~version~2~~~~~~~~~~~~~~~~~~~~~

~NFLOOR~~~~~~~~~

~NOBREAK~~~~~~~~

~NORMAL_WAIT~

~N_DIALOGUES~

~N_VERBS~

~OBJ1~/~OBJ2~~~~

~OBJECT~

~OBJONTOP~~~~~~~

~OBJ_COL~

~OMOVE~~~~~~~~~~

~PATH~

~PAUSE_BACK~

~PAUSE_FRONT~

~PAUSE_LEFT~

~PAUSE_RIGHT~

~PBOB~~~~~~~~~~~

~PICK~~~~~~~~~~~

~PREP~~~~~~~~~~~

~QUIT~~~~~~~~~~~

~REDO~~~~~~~~~~~

~REMOVE~~~~~~~~~

~RESOURCE~

~RESP~~~~~~~~~~~

~RESTORETIME~~~~

002e4fd0-0 117 / 123

~RESUME~~~~~~~~~

~ROOMBOBS~

~ROOMBOBS~

~ROOMOBJ~

~ROOMOBJS~

~SAM~~~~~~~~~~~~

~SAMLOAD~~~~~~~~

~SAVETIME~~~~~~~

~SAY~~~~~~~~~~~~

~SECTION~

~SECTIONBOBS~

~SECTIONBOBS~

~SECTIONOBJ~

~SECTIONOBJS~

~SENTENCE_LAYOUT~

~SETDATE~~~~~~~~

~SETFLOOR~~~~~~~

~SETOF~~~~~~~~~~

~SETRF~~~~~~~~~~

~SETTIME~~~~~~~~

~SHOW~~~~~~~~~~~

~SHOWEXIT~~~~~~~

~Special~Characters~in~Text~Strings~~~~

~START_POS~

~START_ROOM~

~Statements~in~the~graal.main~file~~~~~

~Statements~in~the~n.room~files~~~~~~~~

~Statements~in~the~n.section~files~~~~~

~STATIC~

002e4fd0-0 118 / 123

~STILL_BACK~

~STILL_FRONT~

~STILL_LEFT~

~STILL_RIGHT~

~Syntax~Conventions~~~~~~~~~~~~~~~~~~~~

~SYSTEM_TEXT~

~TALK_MAP~

~TEXT~~~~~~~~~~~

~The~GRAAL~player~interface~~~~~~~~~~~~

~The~Structure~of~a~GRAAL~Game~~~~~~~~~

~THINK~~~~~~~~~~

~TIME_FORMAT~

~TIME_LAYOUT~

~TITLE~~~~~~~~~~

~TITLEFONT1~

~TITLEFONT2~

~TRACK~~~~~~~~~~

~Trouble-shooting~~~~~~~~~~~~~~~~~~~~~~

~TYPE~~~~~~~~~~~

~UPDATE~

~VERB~~~~~~~~~~~

~VERB_TEXT~

~VERB_ZONE~

~VERSION~

~W(ait)~~~~~~~~~

~WALK_AWAY~

~WALK_BUTTON~

~WALK_LEFT~

002e4fd0-0 119 / 123

~WALK_RIGHT~

~WALK_SPEED~

~WALK_TOWARD~
.ptrn

.scene
=DEMO=>
=DEMO=>
=DEMO=>

>>Illegal~function~call>>~abort~~~~~~~~~~~~~~~

ACTION

ACTION:

ADDOF

ADDRF

ADDTIME

ANIM

anim~sequence

animation~sequence

animation~sequences

BOBOFF

BOBON

BOBS

BOBS

BOBS:

CANCEL

CBOB

CHAR

CHAR~OFF

CLPART

CLPART

CMOVE

COLOUR

002e4fd0-0 120 / 123

CPOS

CURSOR_PALETTE

DACT

DATE_FORMAT

DATE_LAYOUT

DAY_TEXT:

DECOF

DECRF

DLG

DLG:

DOAFTER

DSET

EDLG

EXIT

EXIT

EXIT:

FADE

FLOOR

FLOOR:

GET

GOTO

GRAAL~’looses’~the~exit~number~~~~~~~~~~~~~~~~

GRAAL~ignores~my~rooms~~~~~~~~~~~~~~~~~~~~~~~~

graal.main

HANDLE

HIDE

HIDEEXIT

IFOF

IFRF

002e4fd0-0 121 / 123

IFTYPE

LACT

LACT

LIGHTS~ON

LINE

LINE:

MARK

MAX_ROOMS

MEXIT

MOBJ

MONTH_TEXT:

Mouse~cursor~does~not~register~visible~object~

My~command~/~statement~doesn’t~work~~~~~~~~~~~

My~exits~do~not~show~up~on~screen~~~~~~~~~~~~~

My~iff~pictures~look~awful~/~crash~the~system~

n.room

n.section

NAME

NFLOOR

NOBREAK

N_VERBS

OBJ1

OBJ1

OBJ1/OBJ2

OBJECT

OBJECT

OBJONTOP

OMOVE

002e4fd0-0 122 / 123

PATH:

PAUSE_...

PICK

REDO

REMOVE

RESP

RESTORETIME

RESUME

ROOMBOBS

SAM

SAMLOAD

SAMPLAY

SAVETIME

SAY

sentences

SETDATE

SETFLOOR

SETOF

SETRF

SETTIME

SHOW

SHOWEXIT

special~characters

START_POS

STATIC

STILL_...

syntax

THINK

TIME_FORMAT

002e4fd0-0 123 / 123

TIME_LAYOUT

TITLE

TITLEFONT:

TYPE

VERB

VERB
VERB_TEXT:

WALK_...

	002e4fd0-0
	"
	 A Very Short Introduction
	 Machine Requirements
	 News in version 2
	 About this Tutorial
	 The Structure of a GRAAL Game
	 Syntax Conventions
	 Limitations, Ranges, Reserved Numbers
	 Variables in Text Strings
	GRAAL Commands
	GRAAL Conditions
	animation sequences
	 The GRAAL player interface
	 IFOBJ / IFOBJ2
	 IFPICK
	 IFOF
	 IFROOM
	 IFRF
	 IFCARR / IFNOTCARR
	 IFTYPE
	 IFSPOS
	 IFCBOB
	 IFFLOOR
	 IFDATE
	 IFTIME
	 IFWEEKDAY
	 W(ait)
	 EXIT
	 REDO
	 CUTSCENE
	 QUIT
	 DOAFTER
	 CANCEL
	 DSET
	 LINE
	 EDLG
	 OBJ1 / OBJ2
	 VERB
	 ROOM
	 MARK
	 RESUME
	 SAY
	 GOTO
	 THINK
	 RESP
	 HANDLE
	 PICK
	 GET
	 REMOVE
	 NAME
	 ICON
	 PREP
	 NEWOBJ
	 SETOF
	 ADDOF
	 DECOF
	 SETRF
	 ADDRF
	 SHOWEXIT
	 HIDEEXIT
	 DECRF
	 CBOB
	 CMOVE
	 MOBJ
	 MEXIT
	 CPOS
	 CHAR
	 FLOOR
	 NFLOOR
	 SETFLOOR
	 OMOVE
	 SHOW
	 HIDE
	 OBJONTOP
	 TRACK
	 SAMLOAD
	 SAMPLAY
	 CLPART
	 BOBS
	 HOTSP
	 LIGHTS
	 COLOUR
	 FADE
	 CAMERA
	 TITLE
	 TYPE
	 TEXT
	 BOBON
	 BOBOFF
	 PBOB
	 SETDATE
	 SETTIME
	 ADDTIME
	 SAVETIME
	 RESTORETIME
	 NOBREAK
	 FINAL
	 graal.main file
	 .section files
	 .room files
	NAME
	VERSION
	MAX_CACHE
	 ARROW_CURSOR:
	 CURSOR_PALETTE:
	INV_LAYOUT
	 INV_UP
	 DLG_LAYOUT
	 CUTSCENE_LAYOUT
	 SENTENCE_LAYOUT
	 TIME_FORMAT
	 TIME_LAYOUT
	 DATE_FORMAT
	 DATE_LAYOUT
	 WALK_BUTTON
	 DISABLE_QUIT
	 N_VERBS
	 VERB_ZONE
	 VERB_TEXT
	 MONTH_TEXT
	 DAY_TEXT
	 SYSTEM_TEXT
	EXIT_COL
	OBJ_COL
	START_ROOM
	MAX_ROOM
	MAX_SECTION
	MAX_DACT
	 N_DIALOGUES
	MSGFONT
	 LINE_LENGTH
	 NORMAL_WAIT
	 MODE_SWITCH
	 SPLIT_LINE
	COMMAND_AREA
	RESOURCE
	GLOBALOBJS
	GLOBALBOBS
	CLPART
	BOBS
	CHARACTER_HEIGHT
	CHARACTER_BOB
	CHARACTER_COL
	PAUSE_RIGHT
	STILL_RIGHT
	WALK_RIGHT
	WALK_SPEED
	TALK_MAP
	HANDLE_MAP
	OBJECT
	DLG
	ACTION
	DACT
	UPDATE
	SECTION
	BG_IFF
	START_POS
	FLOOR
	 PATH
	EXIT
	STATIC
	ANIM
	LINE
	LACT
	 Trouble-shooting
	My command / statement doesn't work
	My iff pictures look awful / crash the system
	GRAAL ignores my rooms
	"
	Mouse cursor does not register visible object
	My exits do not appear
	GRAAL
	Index

